An AGC Dynamic Optimization Method Based on Proximal Policy Optimization
نویسندگان
چکیده
The increasing penetration of renewable energy introduces more uncertainties and creates fluctuations in power systems than ever before, which brings great challenges for automatic generation control (AGC). It is necessary grid operators to develop an advanced AGC strategy handle uncertainties. dynamic optimization a sequential decision problem that can be formulated as discrete-time Markov process. Therefore, this article proposes novel framework based on proximal policy (PPO) reinforcement learning algorithm optimize regulation among each generator advance. Then, the detailed modeling process reward functions state action space designing presented. application proposed PPO-based simulated modified IEEE 39-bus system compared with classical proportional−integral (PI) other algorithms. results case study show make frequency characteristic better satisfy performance standard (CPS) under scenario large systems.
منابع مشابه
Proximal Policy Optimization Algorithms
We propose a new family of policy gradient methods for reinforcement learning, which alternate between sampling data through interaction with the environment, and optimizing a “surrogate” objective function using stochastic gradient ascent. Whereas standard policy gradient methods perform one gradient update per data sample, we propose a novel objective function that enables multiple epochs of ...
متن کاملAn interior proximal method in vector optimization
This paper studies the vector optimization problem of finding weakly efficient points for maps from R to R, with respect to the partial order induced by a closed, convex, and pointed cone C ⊂ R, with nonempty interior. We develop for this problem an extension of the proximal point method for scalar-valued convex optimization problem with a modified convergence sensing conditon that allows us to...
متن کاملDYNAMIC PERFORMANCE OPTIMIZATION OF TRUSS STRUCTURES BASED ON AN IMPROVED MULTI-OBJECTIVE GROUP SEARCH OPTIMIZER
This paper presents an improved multi-objective group search optimizer (IMGSO) that is based on Pareto theory that is designed to handle multi-objective optimization problems. The optimizer includes improvements in three areas: the transition-feasible region is used to address constraints, the Dealer’s Principle is used to construct the non-dominated set, and the producer is updated using a tab...
متن کاملProximal-ACCPM: a versatile oracle based optimization method
Oracle Based Optimization (OBO) conveniently designates an approach to handle a class of convex optimization problems in which the information pertaining to the function to be minimized and/or to the feasible set takes the form of a linear outer approximation revealed by an oracle. We show, through three representative examples, how difficult problems can be cast in this format, and solved. We ...
متن کاملAn Asynchronous Distributed Proximal Gradient Method for Composite Convex Optimization
xi=x̄i when ‖∇xif(x̄)‖2 ≤ λBi, it follows that x̄i = x̄i if and only if ‖∇xif(x̄)‖2 ≤ λBi. Hence, hi(x̄ ∗ i ) = 0. Case 2: Suppose that i ∈ Ic := N \ I, i.e., ‖∇xif(x̄)‖2 > λBi. In this case, x̄i 6= x̄i. From the first-order optimality condition, we have ∇xif(x̄) + Li(x̄i − x̄i) + λBi x̄ ∗ i −x̄i ‖x̄i −x̄i‖2 = 0. Let si := x̄∗i −x̄i ‖x̄i −x̄i‖2 and ti := ‖x̄i − x̄i‖2, then si = −∇xif(x̄) Liti+λBi . Since ‖si‖2 = 1, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Energy Research
سال: 2022
ISSN: ['2296-598X']
DOI: https://doi.org/10.3389/fenrg.2022.947532