An Accurate HyperSingular Boundary Integral Equation Method for Dynamic Poroelasticity in Two Dimensions
نویسندگان
چکیده
This paper is concerned with the boundary integral equation method for solving exterior Neumann value problem of dynamic poroelasticity in two dimensions. The main contribution this work consists aspescts: proposal a novel regularized equation, and presentation new formulations strongly singular hyper-singular operators. First, turning to spectral properties double-layer operator corresponding Calderón relation poroelasticity, we propose low-GMRES-iteration whose eigenvalues are bounded away from zero infinity. Second, help classical idea using Günter derivatives integration-by-parts, reformulate operators into combinations weakly tangential derivatives. accuracy efficiency proposed methodology demonstrated through several numerical examples.
منابع مشابه
Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method
In this paper, we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain. This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve. To this end, the boundary integral equation method is used. Since the resulting system of linea...
متن کاملThe numerical solution of a nonlinear hypersingular boundary integral equation
In this paper we consider a direct hypersingular integral approach to solve harmonic problems with nonlinear boundary conditions by using a practical variant of the Galerkin boundary element method. The proposed approach provides an almost optimal balance between the order of convergence and the numerical effort of work to compute the approximate solution. Numerical examples confirm the theoret...
متن کاملDomain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions
In this paper we report on a non-overlapping and an overlapping domain decomposition method as preconditioners for the boundary element approximation of an indefinite hypersingular integral equation on a surface. The equation arises from an integral reformulation of the Neumann screen problem with the Helmholtz equation in the exterior of a screen in R. It is well-known that the linear algebrai...
متن کاملSolution of a hypersingular integral equation in two disjoint intervals
A hypersingular integral equation in two disjoint intervals is solved by using the solution of Cauchy type singular integral equation in disjoint intervals. Also a direct function theoretic method is used to determine the solution of the same hypersingular integral equation in two disjoint intervals. Solutions by both the methods are in good agreement with each other.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2021
ISSN: ['1095-7197', '1064-8275']
DOI: https://doi.org/10.1137/20m1360712