An abbreviation of Croisot's axiom-system for distributive lattices with $I$.

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Almost Distributive Lattices-I

The concept of a GADL as a generalization of an ADL is introduced. Necessary and sufficient conditions for a GADL to become a distributive lattice and a GADL to become an ADL are obtained. We also study the maximal sets in a GADL and give equivalent conditions for a GADL to become a distributive lattice in terms of maximal

متن کامل

Distributive Lattices of λ-simple Semirings

In this paper, we study the decomposition of semirings with a semilattice additive reduct. For, we introduce the notion of principal left $k$-radicals $Lambda(a)={x in S | a stackrel{l}{longrightarrow^{infty}} x}$ induced by the transitive closure $stackrel{l}{longrightarrow^{infty}}$ of the relation $stackrel{l}{longrightarrow}$ which induce the equivalence relation $lambda$. Again non-transit...

متن کامل

FUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES

The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...

متن کامل

Distributive lattices with strong endomorphism kernel property as direct sums

Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem  2.8}). We shall determine the structure of special elements (which are introduced after  Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...

متن کامل

Representations of Join-homomorphisms of Distributive Lattices with Doubly 2-distributive Lattices

In the early eighties, A. Huhn proved that if D, E are finite distributive lattices and ψ : D → E is a {0}-preserving join-embedding, then there are finite lattices K, L and there is a lattice homomorphism φ : K → L such that ConK (the congruence lattice of K) is isomorphic to D, ConL (the congruence lattice of L) is isomorphic to E, and the natural induced mapping extφ : ConK → ConL represents...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Notre Dame Journal of Formal Logic

سال: 1972

ISSN: 0029-4527

DOI: 10.1305/ndjfl/1093894638