Almost sure exponential stability of numerical solutions for stochastic delay differential equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost sure exponential stability of numerical solutions for stochastic delay differential equations

Using techniques based on the continuous and discrete semimartingale convergence theorems, this paper investigates if numerical methods may reproduce the almost sure exponential stability of the exact solutions to stochastic delay differential equations (SDDEs). The important feature of this technique is that it enables us to study the almost sure exponential stability of numerical solutions of...

متن کامل

Almost Sure Exponential Stability of Stochastic Differential Delay Equations

This paper is concerned with the almost sure exponential stability of the multidimensional nonlinear stochastic differential delay equation (SDDE) with variable delays of the form dx(t) = f(x(t−δ1(t)), t)dt+g(x(t−δ2(t)), t)dB(t), where δ1, δ2 : R+ → [0, τ ] stand for variable delays. We show that if the corresponding (nondelay) stochastic differential equation (SDE) dy(t) = f(y(t), t)dt + g(y(t...

متن کامل

Almost Sure Exponential Stability in the Numerical Simulation of Stochastic Differential Equations

This paper is mainly concerned with whether the almost sure exponential stability of stochastic differential equations (SDEs) is shared with that of a numerical method. Under the global Lipschitz condition, we first show that the SDE is pth moment exponentially stable (for p ∈ (0, 1)) if and only if the stochastic theta method is pth moment exponentially stable for a sufficiently small step siz...

متن کامل

Almost Sure and Moment Exponential Stability in the Numerical Simulation of Stochastic Differential Equations

Relatively little is known about the ability of numerical methods for stochastic differential equations (SDEs) to reproduce almost sure and small-moment stability. Here, we focus on these stability properties in the limit as the timestep tends to zero. Our analysis is motivated by an example of an exponentially almost surely stable nonlinear SDE for which the Euler–Maruyama (EM) method fails to...

متن کامل

Almost sure and moment exponential stability of predictor-corrector methods for stochastic differential equations

This paper deals with almost sure and moment exponential stability of a class of predictorcorrector methods applied to the stochastic differential equations of Itô-type. Stability criteria for this type of methods are derived. The methods are shown to maintain almost sure and moment exponential stability for all sufficiently small timesteps under appropriate conditions. A numerical experiment f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2010

ISSN: 0029-599X,0945-3245

DOI: 10.1007/s00211-010-0294-7