Almost sure and moment Lyapunov exponents for a stochastic beam equation
نویسندگان
چکیده
منابع مشابه
T . Lyapunov Exponents for Stochastic
Primary audience. Ph.D. students and advanced M.S. students interested in stochastic processes. General Course Description. A basic course which introduces the topic of stochastic partial di¤erential equations (SPDEs) via some simple examples that are amenable to detailed calculations, focusing mainly on parabolic equations. The prerequisite for the course being only a graduate course in probab...
متن کاملA converse Lyapunov theorem for almost sure stabilizability
We prove a converse Lyapunov theorem for almost sure stabilizability of controlled diffusions: given a stochastic system a.s. open loop stabilizable at the origin, we construct a lower semicontinuous positive definite function whose level sets form a local basis of viable neighborhoods of the equilibrium. This result provides, with the direct Lyapunov theorem proved in a companion paper, a comp...
متن کاملAlmost sure stability for uncertain differential equation
Uncertain differential equation is a type of differential equation driven by Liu process. So far, concepts of stability and stability in mean for uncertain differential equations have been proposed. This paper aims at providing a concept of almost sure stability for uncertain differential equation. A sufficient condition is given for an uncertain differential equation being almost surely stable...
متن کاملAlmost sure and moment exponential stability of predictor-corrector methods for stochastic differential equations
This paper deals with almost sure and moment exponential stability of a class of predictorcorrector methods applied to the stochastic differential equations of Itô-type. Stability criteria for this type of methods are derived. The methods are shown to maintain almost sure and moment exponential stability for all sufficiently small timesteps under appropriate conditions. A numerical experiment f...
متن کاملAlmost Sure and Moment Exponential Stability in the Numerical Simulation of Stochastic Differential Equations
Relatively little is known about the ability of numerical methods for stochastic differential equations (SDEs) to reproduce almost sure and small-moment stability. Here, we focus on these stability properties in the limit as the timestep tends to zero. Our analysis is motivated by an example of an exponentially almost surely stable nonlinear SDE for which the Euler–Maruyama (EM) method fails to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2007
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2006.10.006