Almost all $S$-integer dynamical systems have many periodic points
نویسندگان
چکیده
منابع مشابه
Institute for Mathematical Physics Almost All S{integer Dynamical Systems Have Many Periodic Points Almost All S{integer Dynamical Systems Have Many Periodic Points
We show that for almost every ergodic S{integer dynamical system the radius of convergence of the dynamical zeta function is no larger than exp(? 1 2 htop) < 1. In the arithmetic case almost every zeta function is irrational. We conjecture that for almost every ergodic S{integer dynamical system the radius of convergence of the zeta function is exactly exp(?htop) < 1 and the zeta function is ir...
متن کاملAlmost All Friendly Matrices Have Many Obstructions
A symmetric m×m matrix M with entries taken from {0, 1, ∗} gives rise to a graph partition problem, asking whether a graph can be partitioned into m vertex sets matched to the rows (and corresponding columns) of M such that, if Mij = 1, then any two vertices between the corresponding vertex sets are joined by an edge, and if Mij = 0 then any two vertices between the corresponding vertex sets ar...
متن کاملAlmost All Integer Matrices Have No Integer Eigenvalues
In a recent issue of this MONTHLY, Hetzel, Liew, and Morrison [4] pose a rather natural question: what is the probability that a random n× n integer matrix is diagonalizable over the field of rational numbers? Since there is no uniform probability distribution on Z, we need to exercise some care in interpreting this question. Specifically, for an integer k ≥ 1, let Ik = {−k,−k + 1, . . . , k − ...
متن کاملInteger Sequences and Periodic Points
Arithmetic properties of integer sequences counting periodic points are studied, and applied to the case of linear recurrence sequences, Bernoulli numerators, and Bernoulli denominators.
متن کاملAlmost all Steiner triple systems have perfect matchings
We show that for any n divisible by 3, almost all order-n Steiner triple systems have a perfect matching (also known as a parallel class or resolution class). In fact, we prove a general upper bound on the number of perfect matchings in a Steiner triple system and show that almost all Steiner triple systems essentially attain this maximum. We accomplish this via a general theorem comparing a un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ergodic Theory and Dynamical Systems
سال: 1998
ISSN: 0143-3857,1469-4417
DOI: 10.1017/s0143385798113378