Almost all $S$-integer dynamical systems have many periodic points

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Institute for Mathematical Physics Almost All S{integer Dynamical Systems Have Many Periodic Points Almost All S{integer Dynamical Systems Have Many Periodic Points

We show that for almost every ergodic S{integer dynamical system the radius of convergence of the dynamical zeta function is no larger than exp(? 1 2 htop) < 1. In the arithmetic case almost every zeta function is irrational. We conjecture that for almost every ergodic S{integer dynamical system the radius of convergence of the zeta function is exactly exp(?htop) < 1 and the zeta function is ir...

متن کامل

Almost All Friendly Matrices Have Many Obstructions

A symmetric m×m matrix M with entries taken from {0, 1, ∗} gives rise to a graph partition problem, asking whether a graph can be partitioned into m vertex sets matched to the rows (and corresponding columns) of M such that, if Mij = 1, then any two vertices between the corresponding vertex sets are joined by an edge, and if Mij = 0 then any two vertices between the corresponding vertex sets ar...

متن کامل

Almost All Integer Matrices Have No Integer Eigenvalues

In a recent issue of this MONTHLY, Hetzel, Liew, and Morrison [4] pose a rather natural question: what is the probability that a random n× n integer matrix is diagonalizable over the field of rational numbers? Since there is no uniform probability distribution on Z, we need to exercise some care in interpreting this question. Specifically, for an integer k ≥ 1, let Ik = {−k,−k + 1, . . . , k − ...

متن کامل

Integer Sequences and Periodic Points

Arithmetic properties of integer sequences counting periodic points are studied, and applied to the case of linear recurrence sequences, Bernoulli numerators, and Bernoulli denominators.

متن کامل

Almost all Steiner triple systems have perfect matchings

We show that for any n divisible by 3, almost all order-n Steiner triple systems have a perfect matching (also known as a parallel class or resolution class). In fact, we prove a general upper bound on the number of perfect matchings in a Steiner triple system and show that almost all Steiner triple systems essentially attain this maximum. We accomplish this via a general theorem comparing a un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 1998

ISSN: 0143-3857,1469-4417

DOI: 10.1017/s0143385798113378