Almost all Diophantine sets are undecidable

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

When almost all sets are difference dominated

We investigate the relationship between the sizes of the sum and difference sets attached to a subset of {0, 1, ..., N}, chosen randomly according to a binomial model with parameter p(N), with N = o(p(N)). We show that the random subset is almost surely difference dominated, as N → ∞, for any choice of p(N) tending to zero, thus confirming a conjecture of Martin and O’Bryant. Furthermore, we ex...

متن کامل

Undecidable Diophantine Equations

In 1900 Hubert asked for an algorithm to decide the solvability of all diophantine equations, P(x1, . . . , xv) = 0, where P is a polynomial with integer coefficients. In special cases of Hilbert's tenth problem, such algorithms are known. Siegel [7] gives an algorithm for all polynomials P(xx, . . . , xv) of degree < 2. From the work of A. Baker [1] we know that there is also a decision proced...

متن کامل

Diophantine undecidable theories of arithmetic

1 Diophantine undecidability Let T be a theory in the usual rst-order language of arithmetic L A (with non-logical symbols 0; 1; +; ; <) extending PA ? , the theory of the nonnegative parts of discretely ordered rings. I shall make use of the usual classes of L A-formulas deened in terms of quantiier complexity, 9 1 1 is the set of L A-formulas of the form 9 x (x; y) with quantiier-free, and 1 ...

متن کامل

Almost All Palindromes Are Composite

We study the distribution of palindromic numbers (with respect to a fixed base g ≥ 2) over certain congruence classes, and we derive a nontrivial upper bound for the number of prime palindromes n ≤ x as x → ∞. Our results show that almost all palindromes in a given base are composite. ∗MSC Numbers: 11A63, 11L07, 11N69 †Corresponding author 1

متن کامل

Almost All Complex Quantifiers Are Simple

We prove that PTIME generalized quantifiers are closed under Boolean operations, iteration, cumulation and resumption.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematical Forum

سال: 2017

ISSN: 1314-7536

DOI: 10.12988/imf.2017.7763