ALGORITMA K-NEAREST NEIGHBOR TERHADAP PELUANG MAHASISWA MENJADI AKTIVIS KAMPUS PADA JURUSAN MATEMATIKA UNIVERSITAS NEGERI PADANG

نویسندگان

چکیده

The purpose of this study was to predict whether mathematics students at Padang State University have the opportunity become campus activists using K-Nearest Neighbor Algorithm (KNN). This research will be used as a benchmark calculate how many can University. (KNN) is machine learning algorithm that has resistance training data where there lot noise and more effective for large data. itself distance-based classification process determining closeness between different closest neighbor choose class or category based on K nearest neighbors. In research, first step, collected several factors influenced them activists, an analysis finding distance Euclidean carried out. 46% are not

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drought Monitoring and Prediction using K-Nearest Neighbor Algorithm

Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...

متن کامل

Fast Approximate Nearest-Neighbor Search with k-Nearest Neighbor Graph

We introduce a new nearest neighbor search algorithm. The algorithm builds a nearest neighbor graph in an offline phase and when queried with a new point, performs hill-climbing starting from a randomly sampled node of the graph. We provide theoretical guarantees for the accuracy and the computational complexity and empirically show the effectiveness of this algorithm.

متن کامل

Unsupervised K-Nearest Neighbor Regression

In many scientific disciplines structures in highdimensional data have to be found, e.g., in stellar spectra, in genome data, or in face recognition tasks. In this work we present a novel approach to non-linear dimensionality reduction. It is based on fitting K-nearest neighbor regression to the unsupervised regression framework for learning of low-dimensional manifolds. Similar to related appr...

متن کامل

Neighbor-weighted K-nearest neighbor for unbalanced text corpus

Text categorization or classification is the automated assigning of text documents to pre-defined classes based on their contents. Many of classification algorithms usually assume that the training examples are evenly distributed among different classes. However, unbalanced data sets often appear in many practical applications. In order to deal with uneven text sets, we propose the neighbor-wei...

متن کامل

Evolving edited k-Nearest Neighbor Classifiers

The k-nearest neighbor method is a classifier based on the evaluation of the distances to each pattern in the training set. The edited version of this method consists of the application of this classifier with a subset of the complete training set in which some of the training patterns are excluded, in order to reduce the classification error rate. In recent works, genetic algorithms have been ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Lebesgue

سال: 2023

ISSN: ['2721-8929', '2721-8937']

DOI: https://doi.org/10.46306/lb.v4i2.401