Algorithms and Hardness for Metric Dimension on Digraphs
نویسندگان
چکیده
In the Metric Dimension problem, one asks for a minimum-size set R of vertices such that any pair graph, there is vertex from whose two distances to are distinct. This problem has mainly been studied on undirected graphs and gained lot attention in recent years. We focus directed graphs, show how solve linear-time digraphs underlying graph (ignoring multiple edges) tree. (nontrivially) extends previous algorithm oriented trees. then extend method unicyclic (understood as multigraph unique cycle). also give fixed-parameter-tractable when parameterized by modular-width, extending known result graphs. Finally, we NP-hard even planar triangle-free acyclic maximum degree 6.
منابع مشابه
Note on Metric Dimension
The metric dimension of a compact metric space is defined here as the order of growth of the exponential metric entropy of the space. The metric dimension depends on the metric, but is always bounded below by the topological dimension. Moreover, there is always an equivalent metric in which the metric and topological dimensions agree. This result may be used to define the topological dimension ...
متن کاملThe metric dimension and girth of graphs
A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...
متن کاملOn the metric dimension and fractional metric dimension for hierarchical product of graphs
A set of vertices W resolves a graph G if every vertex of G is uniquely determined by its vector of distances to the vertices in W . The metric dimension for G, denoted by dim(G), is the minimum cardinality of a resolving set of G. In order to study the metric dimension for the hierarchical product G2 2 uG1 1 of two rooted graphs G2 2 and G u1 1 , we first introduce a new parameter, the rooted ...
متن کاملAlgorithms and Complexity for Metric Dimension and Location-domination on Interval and Permutation Graphs
We study the problems Locating-Dominating Set and Metric Dimension, which consist in determining a minimum-size set of vertices that distinguishes the vertices of a graph using either neighbourhoods or distances. We consider these problems when restricted to interval graphs and permutation graphs. We prove that both decision problems are NP-complete, even for graphs that are at the same time in...
متن کاملMetric Dimension for Random Graphs
The metric dimension of a graph G is the minimum number of vertices in a subset S of the vertex set of G such that all other vertices are uniquely determined by their distances to the vertices in S. In this paper we investigate the metric dimension of the random graph G(n, p) for a wide range of probabilities p = p(n).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2023
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-031-43380-1_17