Algorithms and application for special classes of nonlinear least squares problems
نویسندگان
چکیده
منابع مشابه
Randomized Algorithms for Solving Large Scale Nonlinear Least Squares Problems
This thesis presents key contributions towards devising highly efficient stochastic reconstruction algorithms for solving large scale inverse problems, where a large data set is available and the underlying physical systems is complex, e.g., modeled by partial differential equations (PDEs). We begin by developing stochastic and deterministic dimensionality reduction methods to transform the ori...
متن کاملVariable projection for nonlinear least squares problems
The variable projection algorithm of Golub and Pereyra (1973) has proven to be quite valuable in the solution of nonlinear least squares problems in which a substantial number of the parameters are linear. Its advantages are efficiency and, more importantly, a better likelihood of finding a global minimizer rather than a local one. The purpose of our work is to provide a more robust implementat...
متن کاملFast Algorithms for Structured Least Squares and Total Least Squares Problems
We consider the problem of solving least squares problems involving a matrix M of small displacement rank with respect to two matrices Z 1 and Z 2. We develop formulas for the generators of the matrix M (H) M in terms of the generators of M and show that the Cholesky factorization of the matrix M (H) M can be computed quickly if Z 1 is close to unitary and Z 2 is triangular and nilpotent. These...
متن کاملModels and algorithms for distributionally robust least squares problems
We present different robust frameworks using probabilistic ambiguity descriptions of the input data in the least squares problems. The three probability ambiguity descriptions are given by: (1) confidence interval over the first two moments; (2) bounds on the probability measure with moments constraints; (3) confidence interval over the probability measure by using the Kantorovich probability d...
متن کاملIsoefficiency Analysis of CGLS Algorithms for Parallel Least Squares Problems
In this paper we study the parallelization of CGLS, a basic iterative method for large and sparse least squares problems whose main idea is to organize the computation of conjugate gradient method to normal equations. A performance model called isoeeciency concept is used to analyze the behavior of this method implemented on massively parallel distributed memory computers with two dimensional m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1985
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700004779