Algorithmic thresholds for tensor PCA

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homotopy Analysis for Tensor PCA

Developing efficient and guaranteed nonconvex algorithms has been an important challenge in modern machine learning. Algorithms with good empirical performance such as stochastic gradient descent often lack theoretical guarantees. In this paper, we analyze the class of homotopy or continuation methods for global optimization of nonconvex functions. These methods start from an objective function...

متن کامل

A statistical model for tensor PCA

We consider the Principal Component Analysis problem for large tensors of arbitrary order k under a single-spike (or rank-one plus noise) model. On the one hand, we use information theory, and recent results in probability theory, to establish necessary and sufficient conditions under which the principal component can be estimated using unbounded computational resources. It turns out that this ...

متن کامل

Phase Transitions and Algorithmic Thresholds

Summary of the results on thresholds in a particular anytime algorithm based on (distributed) iterative repair. Discussion of how such thresholds are algorithm dependent in contrast to algorithmindependent phase transitions.

متن کامل

Guaranteed Tensor PCA with Optimality in Statistics and Computation

In this paper, we propose a general framework for tensor singular value decomposition (tensor SVD), which focuses on the methodology and theory for extracting the hidden lowrank structure from high-dimensional tensor data. Comprehensive results are developed on both the statistical and computational limits for tensor SVD. This problem exhibits three different phases according to the signal-nois...

متن کامل

Large Scale Tensor Decompositions: Algorithmic Developments and Applications

Tensor decompositions are increasingly gaining popularity in data science applications. Albeit extremely powerful tools, scalability to truly large datasets for such decomposition algorithms is still a challenging problem. In this paper, we provide an overview of recent algorithmic developments towards the direction of scaling tensor decompositions to big data. We present an exact Map/Reduce ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 2020

ISSN: 0091-1798

DOI: 10.1214/19-aop1415