Algebraic Tensor Products Revisited: Axiomatic Approach
نویسندگان
چکیده
This is an expository paper on tensor products where the standard approaches for constructing concrete instances of algebraic linear spaces, via quotient spaces or maps bilinear maps, are reviewed by reducing them to different but isomorphic interpretations abstract notion, viz. universal property, which based a pair axioms.
منابع مشابه
Tensor Products of Idempotent Semimodules. an Algebraic Approach
We study idempotent analogs of topological tensor products in the sense of A. Grothendieck. The basic concepts and results are simulated on the algebraic level. This is one of a series of papers on idempotent functional analysis.
متن کاملOne More Pathology of C-algebraic Tensor Products
Following E. Kirchberg, [3], we call a bifunctor (A,B) → A⊗α B a C -algebraic tensor product functor if it is obtained by completing of the algebraic tensor product A ⊙ B of C-algebras in a functional way with respect to a suitable C-norm ‖ · ‖α. We call such a functor symmetric if the standard isomorphism A ⊙ B ∼= B ⊙ A extends to an isomorphism A⊗αB ∼= B⊗αA. Similarly, we call it associative ...
متن کاملOn the Non-existence of Tensor Products of Algebraic Cycles
Let ⊗ be the map which classifies the tensor product of two line bundles, an extension of this map to the space of all codimension 1 algebraic cycles is constructed. It is proved that this extension cannot exist in codimension greater than 1.
متن کاملbivariations and tensor products
the ordinary tensor product of modules is defined using bilinear maps (bimorphisms), that are linear in eachcomponent. keeping this in mind, linton and banaschewski with nelson defined and studied the tensor product in an equational category and in a general (concrete) category k, respectively, using bimorphisms, that is, defined via the hom-functor on k. also, the so-called sesquilinear, or on...
متن کاملTensor Products
Let R be a commutative ring and M and N be R-modules. (We always work with rings having a multiplicative identity and modules are assumed to be unital: 1 ·m = m for all m ∈M .) The direct sum M ⊕N is an addition operation on modules. We introduce here a product operation M ⊗RN , called the tensor product. We will start off by describing what a tensor product of modules is supposed to look like....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Malaysian Mathematical Sciences Society
سال: 2021
ISSN: ['2180-4206', '0126-6705']
DOI: https://doi.org/10.1007/s40840-020-01060-0