Algebraic Stein Varieties

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Stein Varieties

It is well-known that the associated analytic space of an affine variety defined over complex number field is Stein but the converse is not true, that is, an algebraic Stein variety is not necessarily affine. In this talk, we will give sufficient and necessary conditions for an algebraic Stein variety to be affine. One of our results is that a quasi-projective variety Y defined over complex num...

متن کامل

Affine Algebraic Varieties

In this paper, we give new criteria for affineness of a variety defined over C. Our main result is that an irreducible algebraic variety Y (may be singular) of dimension d (d ≥ 1) defined over C is an affine variety if and only if Y contains no complete curves, Hi(Y,OY ) = 0 for all i > 0 and the boundary X − Y is support of a big divisor, where X is a projective variety containing Y . We const...

متن کامل

Pure homology of algebraic varieties

We show that for a complete complex algebraic variety the pure term of the weight filtration in homology coincides with the image of intersection homology. Therefore pure homology is topologically invariant. To obtain slightly more general results we introduce image homology for noncomplete varieties.

متن کامل

Algebraic Deformations of Polarized Varieties

Introduction. Let F b e a projectively embeddable complete non-singular variety of dimension n > 1 . Let f be a projective embedding of 7, U a nonsingular variety, W a non-singular variety and φ a morphism of W onto U such that φ^iuo) = f{V) for some point u0 of U. Denote by ΣffO the set of all those complete non-singular fibres φ~(u), u e ί/, as we consider all possible (f, U, W). Suppose that...

متن کامل

Characteristic numbers of algebraic varieties.

A rational linear combination of Chern numbers is an oriented diffeomorphism invariant of smooth complex projective varieties if and only if it is a linear combination of the Euler and Pontryagin numbers. In dimension at least 3, only multiples of the top Chern number, which is the Euler characteristic, are invariant under diffeomorphisms that are not necessarily orientation preserving. In the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2008

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.2008.v15.n4.a16