Algebraic $p$-Adic $L$-Functions in Non-Commutative Iwasawa Theory
نویسندگان
چکیده
منابع مشابه
Iwasawa theory of overconvergent modular forms, I: Critical-slope p-adic L-functions
We construct an Euler system of p-adic zeta elements over the eigencurve which interpolates Kato’s zeta elements over all classical points. Applying a big regulator map gives rise to a purely algebraic construction of a two-variable p-adic L-function over the eigencurve. As a first application of these ideas, we prove the equality of the p-adic L-functions associated with a critical-slope refin...
متن کاملIwasawa Theory and Motivic L-functions
We illustrate the use of Iwasawa theory in proving cases of the (equivariant) Tamagawa number conjecture.
متن کاملRoot numbers, Selmer groups, and non-commutative Iwasawa theory
Global root numbers have played an important role in the study of rational points on abelian varieties since the discovery of the conjecture of Birch and Swinnerton-Dyer. The aim of this paper is to throw some new light on this intriguing and still largely conjectural relationship. The simplest avatar of this phenomenon is the parity conjecture which asserts that for an abelian variety A over a...
متن کاملEmbeddings of Non-commutative L P -spaces in Non-commutative L 1 -spaces, 1 < P < 2
It will be shown that for 1 < p < 2 the Schatten p-class is isometrically isomor-phic to a subspace of the predual of a von Neumann algebra. Similar results hold for non-commutative L p (N;)-spaces deened by a semi-nite, normal, faithful trace on a von Neumann algebra N. The embeddings rely on a suitable notion of p-stable processes in the non-commutative setting.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences
سال: 2009
ISSN: 0034-5318
DOI: 10.2977/prims/1234361155