Algebraic K-theory of quasi-smooth blow-ups and cdh descent

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pro cdh-descent for cyclic homology and K-theory

In this paper we prove that cyclic homology, topological cyclic homology, and algebraic K-theory satisfy a pro Mayer–Vietoris property with respect to abstract blow-up squares of varieties, in both zero and finite characteristic. This may be interpreted as the well-definedness of K-theory with compact support.

متن کامل

Structured Stable Homotopy Theory and the Descent Problem for the Algebraic K-theory of Fields

4 Endomorphism algebras for K-theory spectra 21 4.1 Some algebraic constructions . . . . . . . . . . . . . . . . . . . . 22 4.2 Space level constructions . . . . . . . . . . . . . . . . . . . . . . . 28 4.3 Group rings and rings of endomorphisms . . . . . . . . . . . . . . 30 4.4 A conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.5 Examples where F contains an algebraic...

متن کامل

TORIC VARIETIES, MONOID SCHEMES AND cdh DESCENT

We give conditions for the Mayer-Vietoris property to hold for the algebraic K-theory of blow-up squares of toric varieties and schemes, using the theory of monoid schemes. These conditions are used to relate algebraic K-theory to topological cyclic homology in characteristic p. To achieve our goals, we develop many notions for monoid schemes based on classical algebraic geometry, such as separ...

متن کامل

Nonpositive curvature of blow - ups

Consider the following situation: MC is a complex manifold of complex dimension n, and DC is a union of smooth complex codimension-one submanifolds (i.e., DC is a smooth divisor). Examples of this situation include: (1) arrangements of projective hyperplanes in CP, as well as various blow-ups of such arrangements along intersections of hyperplanes, (2) nonsingular toric varieties (whereDC is th...

متن کامل

Chern Classes of Blow-ups

We extend the classical formula of Porteous for blowing-up Chern classes to the case of blow-ups of possibly singular varieties along regularly embedded centers. The proof of this generalization is perhaps conceptually simpler than the standard argument for the nonsingular case, involving Riemann-Roch without denominators. The new approach relies on the explicit computation of an ideal, and a m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Henri Lebesgue

سال: 2020

ISSN: 2644-9463

DOI: 10.5802/ahl.55