Alberti–Uhlmann Problem on Hardy–Littlewood–Pólya Majorization

نویسندگان

چکیده

We fully describe the doubly stochastic orbit of a self-adjoint element in noncommutative $$L_1$$ -space affiliated with semifinite von Neumann algebra, which answers problem posed by Alberti and Uhlmann (Stochasticity partial order: maps unitary mixing. VEB Deutscher Verlag der Wissenschaften, Berlin, 1982) 1980s, extending several results literature. It follows further from our methods that, for any $$\sigma $$ -finite algebra $${{\mathcal {M}}}$$ equipped infinite faithful normal trace $$\tau , there exists operator $$y\in L_1({{\mathcal {M}}},\tau )$$ such that y does not coincide sense Hardy–Littlewood–Pólya, confirms conjecture Hiai (J Math Anal Appl 127:18–48, 1987). However, we show Hiai’s fails non- algebras. The main result present paper also (noncommutative) counterparts problems due to Luxemburg (Proc Symp Queen’s univ 83–144, 1967) Ryff (Pac J 13:1379–1386, 1963) 1960s.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Majorization, Favard and Berwald Inequalities

In this paper, we obtain extensions of majorization type results and extensions of weighted Favard’s and Berwald’s inequality. We prove positive semi-definiteness of matrices generated by differences deduced from majorization type results and differences deduced from weighted Favard’s and Berwald’s inequality. This implies a surprising property of exponentially convexity and log-convexity of th...

متن کامل

Ela on Properties of the Generalized Majorization

Abstract. In this paper, a complete solution of a problem involving generalized majorization of partitions is given: for two pairs of partitions (d, a) and (c,b) necessary and sufficient conditions for the existence of a partition g that is majorized by both pairs is determined. The obtained conditions are explicit, the solution is constructive and it uses novel techniques and indices. Although...

متن کامل

Block Diagonal Majorization on $C_{0}$

Let $mathbf{c}_0$ be the real vector space of all real sequences which converge to zero. For every $x,yin mathbf{c}_0$, it is said that $y$ is block diagonal majorized by $x$ (written $yprec_b x$) if there exists a block diagonal row stochastic matrix $R$ such that $y=Rx$. In this paper we find the possible structure of linear functions $T:mathbf{c}_0rightarrow mathbf{c}_0$ preserving $prec_b$.

متن کامل

Linear Preservers of Majorization

For vectors $X, Yin mathbb{R}^{n}$, we say $X$ is left matrix majorized by $Y$ and write $X prec_{ell} Y$ if for some row stochastic matrix $R, ~X=RY.$ Also, we write $Xsim_{ell}Y,$ when $Xprec_{ell}Yprec_{ell}X.$ A linear operator $Tcolon mathbb{R}^{p}to mathbb{R}^{n}$ is said to be a linear preserver of a given relation $prec$ if $Xprec Y$ on $mathbb{R}^{p}$ implies that $TXprec TY$ on $mathb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2021

ISSN: ['0010-3616', '1432-0916']

DOI: https://doi.org/10.1007/s00220-021-04184-x