Aggregate error locator and error value computation in AG codes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Error-Correction Codes on Abelian Groups

We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.

متن کامل

Error Correcting Codes For Adiabatic Quantum Computation

Recently, there has been growing interest in using adiabatic quantum computation as an architecture for experimentally realizable quantum computers. One of the reasons for this is the idea that the energy gap should provide some inherent resistance to noise. It is now known that universal quantum computation can be achieved adiabatically using 2-local Hamiltonians. The energy gap in these Hamil...

متن کامل

Secure Computation from Random Error Correcting Codes

Secure computation consists of protocols for secure arithmetic: secret values are added and multiplied securely by networked processors. The striking feature of secure computation is that security is maintained even in the presence of an adversary who corrupts a quorum of the processors and who exercises full, malicious control over them. One of the fundamental primitives at the heart of secure...

متن کامل

On Computation of Error Locations and Values in Hermitian Codes

We obtain a technique to reduce the computational complexity associated with decoding of Hermitian codes. In particular, we propose a method to compute the error locations and values using an uni-variate error locator and an uni-variate error evaluator polynomial. To achieve this, we introduce the notion of Semi-Erasure Decoding of Hermitian codes and prove that decoding of Hermitian codes can ...

متن کامل

One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes

We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2006

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2006.03.016