Aggregate-based Training Phase for ML-based Cardinality Estimation

نویسندگان

چکیده

Abstract Cardinality estimation is a fundamental task in database query processing and optimization. As shown recent papers, machine learning (ML)-based approaches may deliver more accurate cardinality estimations than traditional approaches. However, lot of training queries have to be executed during the model phase learn data-dependent ML making it very time-consuming. Many those or example use same base data, structure, only differ their selective predicates. To speed up phase, our core idea determine predicate-independent pre-aggregation data execute over this pre-aggregated data. Based on idea, we present specific aggregate-based for ML-based paper. are going show with different workloads evaluation, able achieve an average speedup 90 thus outperform indexes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel-Based Cardinality Estimation on Metric Data

The efficient management of metric data is extremely important in many challenging applications as they occur e.g. in the life sciences. Here, data typically cannot be represented in a vector space. Instead, a distance function only allows comparing individual elements with each other to support distance queries. As high-dimensional data suffers strongly from the curse of dimensionality, distan...

متن کامل

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

Incremental ML estimation of HMM parameters for efficient training

Conventional training of a hidden Markov model (HMM) is performed by an expectation-maximization algorithm using a maximum likelihood (ML) criterion. Recently it was reported that, using an incremental variant of maximum a posteriori estimation, substantial speed improvements could be obtained. The approach requires a prior distribution when the training starts, although it is diicult to nd an ...

متن کامل

A Cardinality Estimation Approach Based on Two Level Histograms

For the mainstream relational database management systems, histograms play important roles in cardinality estimation. The main histogram-based cardinality estimation approaches can be classified into two categories: proactive approaches and reactive approaches. For the former, histograms are constructed and updated by periodical data scan which is also the essential reason affecting the accurac...

متن کامل

Iterative Code-Aided ML Phase Estimation and Phase Ambiguity Resolution

As many coded systems operate at very low signal-to-noise ratios, synchronization becomes a very difficult task. In many cases, conventional algorithms will either require long training sequences or result in large BER degradations. By exploiting code properties, these problems can be avoided. In this contribution we present several iterative maximum-likelihood (ML) algorithms for joint carrier...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Datenbank-spektrum

سال: 2022

ISSN: ['1618-2162', '1610-1995']

DOI: https://doi.org/10.1007/s13222-021-00400-z