Affine category O, Koszul duality and Zuckerman functors

نویسندگان

چکیده

The parabolic category O for affine glN at level −N−e admits a structure of categorical representation sl˜e with respect to some endofunctors E and F. This contains smaller A that categorifies the higher Fock space. We prove functors F in are Koszul dual Zuckerman functors. key point proof is show functor can be decomposed terms components −N−e−1. To this, we use following fact from [9]: an action sl˜e+1 (canonically defined) subcategory sl˜e. also general statement says situation satisfies list axioms automatically sort functor.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Koszul Duality and Affine Hecke Algebras

In this paper we prove that the linear Koszul duality equivalence constructed in a previous paper provides a geometric realization of the Iwahori-Matsumoto involution of affine Hecke algebras.

متن کامل

Affine Functors of Monoids and Duality

Let G = SpecA be an affine functor of monoids. We prove that A∗ is the enveloping functor of algebras of G and that the category of Gmodules is equivalent to the category of A∗-modules. Moreover, we prove that the category of affine functors of monoids is anti-equivalent to the category of functors of affine bialgebras. Applications of these results include Cartier duality, neutral Tannakian du...

متن کامل

Gale Duality and Koszul Duality

Given a hyperplane arrangement in an affine space equipped with a linear functional, we define two finite-dimensional, noncommutative algebras, both of which are motivated by the geometry of hypertoric varieties. We show that these algebras are Koszul dual to each other, and that the roles of the two algebras are reversed by Gale duality. We also study the centers and representation categories ...

متن کامل

Category O and sl(k) link invariants

The program of categorification via category O was introduced by J. Bernstein, I. Frenkel, and M. Khovanov in [BFK] where tensor powers of the standard two dimensional representation of sl2 were recognized as Grothendieck groups of certain subcategories of O for various gln. They had two different constructions. One was based on studying certain blocks with singular generalized central characte...

متن کامل

Geometric category O and symplectic duality

The purpose of this proposal is to study algebraic symplectic varieties, which arise naturally in algebraic geometry (Hilbert schemes), representation theory (quiver varieties, Springer theory), combinatorics and polyhedral geometry (hypertoric varieties), and string theory (moduli spaces of gauge theories and of Higgs bundles). Our primary interest will be a certain category of sheaves on thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2021

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2021.107921