Advances in Approximate Bayesian Computation and Trans-Dimensional Sampling Methodology

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Bayesian Computation Estimator for Respondent-Driven Sampling

Respondent-driven sampling is a network-based technique to collect information and make estimation about behavior and composition of social groups in hidden population. The non-randomly selected samples prohibit the use of the sample mean as a statistically valid estimator. Researchers have proposed several asymptotically unbiased estimators, but many fail to realize that the high variance of t...

متن کامل

Approximate Bayesian Computation

Just when you thought it was safe to go back into the water, I’m going to complicate things even further. The Nielsen-Wakely-Hey [5, 3, 4] approach is very flexible and very powerful, but even it doesn’t cover all possible scenarios. It allows for non-equilibrium scenarios in which the populations from which we sampled diverged from one another at different times, but suppose that we think our ...

متن کامل

Adaptive approximate Bayesian computation

Sequential techniques can enhance the efficiency of the approximate Bayesian computation algorithm, as in Sisson et al.’s (2007) partial rejection control version. While this method is based upon the theoretical works of Del Moral et al. (2006), the application to approximate Bayesian computation results in a bias in the approximation to the posterior. An alternative version based on genuine im...

متن کامل

Approximate Bayesian Computation

Approximate Bayesian computation (ABC) constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices amon...

متن کامل

Approximate Bayesian Computation and MCMC

For many complex probability models, computation of likelihoods is either impossible or very time consuming. In this article, we discuss methods for simulating observations from posterior distributions without the use of likelihoods. A rejection approach is illustrated using an example concerning inference in the fossil record. A novel Markov chain Monte Carlo approach is also described, and il...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2009

ISSN: 1556-5068

DOI: 10.2139/ssrn.3785580