ADMM-Based Distributed OPF Problem Meets Stochastic Communication Delay
نویسندگان
چکیده
منابع مشابه
A distributed approach to the OPF problem
This paper presents a distributed approach to optimal power flow (OPF) in an electrical network, suitable for application in a future smart grid scenario where access to resource and control is decentralized. The non-convex OPF problem is solved by an augmented Lagrangian method, similar to the widely known ADMM algorithm, with the key distinction that penalty parameters are constantly increase...
متن کاملImpact of Communication Delay on Asynchronous Distributed Optimal Power Flow Using ADMM
Distributed optimization has attracted lots of attention in the operation of power systems in recent years, where a large area is decomposed into smaller control regions each solving a local optimization problem with periodic information exchange with neighboring regions. However, most distributed optimization methods are iterative and require synchronization of all regions at each iteration, w...
متن کاملNetwork Location Problem with Stochastic and Uniformly Distributed Demands
This paper investigates the network location problem for single-server facilities that are subject to congestion. In each network edge, customers are uniformly distributed along the edge and their requests for service are assumed to be generated according to a Poisson process. A number of facilities are to be selected from a number of candidate sites and a single server is located at each facil...
متن کاملADMM-based Networked Stochastic Variational Inference
Owing to the recent advances in “Big Data” modeling and prediction tasks, variational Bayesian estimation has gained popularity due to their ability to provide exact solutions to approximate posteriors. One key technique for approximate inference is stochastic variational inference (SVI) [1]. SVI poses variational inference as a stochastic optimization problem and solves it iteratively using no...
متن کاملStochastic Variance-Reduced ADMM
The alternating direction method of multipliers (ADMM) is a powerful optimization solver in machine learning. Recently, stochastic ADMM has been integrated with variance reduction methods for stochastic gradient, leading to SAGADMM and SDCA-ADMM that have fast convergence rates and low iteration complexities. However, their space requirements can still be high. In this paper, we propose an inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Smart Grid
سال: 2019
ISSN: 1949-3053,1949-3061
DOI: 10.1109/tsg.2018.2873650