Adjacency-based regularization for partially ranked data with non-ignorable missing
نویسندگان
چکیده
منابع مشابه
Unsupervised Learning with Non-Ignorable Missing Data
In this paper we explore the topic of unsupervised learning in the presence of nonignorable missing data with an unknown missing data mechanism. We discuss several classes of missing data mechanisms for categorical data and develop learning and inference methods for two specific models. We present empirical results using synthetic data which show that these algorithms can recover both the unkno...
متن کاملA transition model for quality-of-life data with non-ignorable non-monotone missing data.
In this paper, we consider a full likelihood method to analyze continuous longitudinal responses with non-ignorable non-monotone missing data. We consider a transition probability model for the missingness mechanism. A first-order Markov dependence structure is assumed for both the missingness mechanism and observed data. This process fits the natural data structure in the longitudinal framewor...
متن کاملA Genetic Algorithm Approach for Non-Ignorable Missing Data
The databases store data that may be subjected to missing values either in data acquisition or data storage process. The proposed approach uses the widely used optimization technique called genetic algorithm for the NMAR (Not Missing At Random) missing mechanism which prevails more in real life that are non-ignorable. Since the non-ignorable mechanism needs prior
متن کاملA Genetic Algorithm Approach for Non-Ignorable Missing Data
The databases store data that may be subjected to missing values either in data acquisition or data storage process. The proposed approach uses the widely used optimization technique called genetic algorithm for the NMAR (Not Missing At Random) missing mechanism which prevails more in real life that are nonignorable. Since the non-ignorable mechanism needs prior basic knowledge about the data t...
متن کاملNon-parametric Modeling of Partially Ranked Data
Statistical models on full and partial rankings of n items are often of limited practical use for large n due to computational consideration. We explore the use of non-parametric models for partially ranked data and derive efficient procedures for their use for large n. The derivations are largely possible through combinatorial and algebraic manipulations based on the lattice of partial ranking...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2020
ISSN: 0167-9473
DOI: 10.1016/j.csda.2019.106905