Adaptive Sequential Stochastic Optimization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization by Adaptive Stochastic Descent

When standard optimization methods fail to find a satisfactory solution for a parameter fitting problem, a tempting recourse is to adjust parameters manually. While tedious, this approach can be surprisingly powerful in terms of achieving optimal or near-optimal solutions. This paper outlines an optimization algorithm, Adaptive Stochastic Descent (ASD), that has been designed to replicate the e...

متن کامل

AdaDelay: Delay Adaptive Distributed Stochastic Optimization

We develop distributed stochastic convex op-timization algorithms under a delayed gradi-ent model in which server nodes update pa-rameters and worker nodes compute stochas-tic (sub)gradients. Our setup is motivated bythe behavior of real-world distributed com-putation systems; in particular, we analyzea setting wherein worker nodes can be dif-ferently slow at dif...

متن کامل

AdaDelay: Delay Adaptive Distributed Stochastic Convex Optimization

We study distributed stochastic convex optimization under the delayed gradient model where theserver nodes perform parameter updates, while the worker nodes compute stochastic gradients. Wediscuss, analyze, and experiment with a setup motivated by the behavior of real-world distributedcomputation networks, where the machines are differently slow at different time. Therefore, we ...

متن کامل

RADAGRAD: Random Projections for Adaptive Stochastic Optimization

We present RADAGRAD a simple and computationally efficient approximation to full-matrix ADAGRAD based on dimensionality reduction using the subsampled randomized Hadamard transform. RADAGRAD is able to capture correlations in the gradients and achieves a similar regret – in theory and empirically – to fullmatrix ADAGRAD but at a computational cost comparable to the diagonal variant.

متن کامل

Distributed Stochastic Optimization via Adaptive Stochastic Gradient Descent

Stochastic convex optimization algorithms are the most popular way to train machine learning models on large-scale data. Scaling up the training process of these models is crucial in many applications, but the most popular algorithm, Stochastic Gradient Descent (SGD), is a serial algorithm that is surprisingly hard to parallelize. In this paper, we propose an efficient distributed stochastic op...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Automatic Control

سال: 2019

ISSN: 0018-9286,1558-2523,2334-3303

DOI: 10.1109/tac.2018.2816168