Adaptation over parametric families of symmetric linear estimators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptation over Parametric Families of Symmetric Linear Estimators

This paper treats an abstract parametric family of symmetric linear estimators for the mean vector of a standard linear model. The estimator in this family that has smallest estimated quadratic risk is shown to attain, asymptotically, the smallest risk achievable over all candidate estimators in the family. The asymptotic analysis is carried out under a strong Gauss-Markov form of the linear mo...

متن کامل

Non-parametric entropy estimators based on simple linear regression

Estimators for differential entropy are proposed. The estimators are based on the second order expansion of the probability mass around the inspection point with respect to the distance from the point. Simple linear regression is utilized to estimate the values of density function and its second derivative at a point. After estimating the values of the probability density function at each of th...

متن کامل

Edge-connectivity augmentation of graphs over symmetric parity families

In this note we solve the edge-connectivity augmentation problem over symmetric parity families. It provides a solution for the minimum T-cut augmentation problem. We also extend a recent result of C. Q. Zhang [8].

متن کامل

On Selecting Parametric Link Transformation Families in Generalized Linear Models

The use of parametric link transformation families in generalized linear models (GLM) has been shown to improve substantially the t of standard analyses using a xed link in some data sets (see Czado 1993], for example). When link and regression parameters are globally orthogonal (Cox and Reid 1987]), then the variance innation of the regression parameter estimates due to the additional estimati...

متن کامل

Explicit Estimators of Parametric Functions in Nonlinear

The possibility of employing explicitly defined functions of the observations as estimators of parametric functions in nonlinear regression analysis is explored. A general theory of best average mean square error estimation leading to explicit estimators is set forth. Such estimators are given a Bayesian interpretation as Fourier expansions of the estimator which minimizes expected posterior sq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Planning and Inference

سال: 2007

ISSN: 0378-3758

DOI: 10.1016/j.jspi.2006.06.029