Adams’ trace principle in Morrey–Lorentz spaces on β-Hausdorff dimensional surfaces

نویسندگان

چکیده

In this paper we strengthen to Morrey-Lorentz spaces the famous trace principle introduced by Adams. More precisely, show that Riesz potential $I_{\alpha}$ is continuous \begin{equation} \Vert I_{\alpha}f\Vert_{\mathcal{M}_{q, \infty}^{\lambda_{\ast}}(d\mu)}\lesssim \Arrowvert\mu\Arrowvert_{\beta}^{{1}/{q}}\,\Vert f\Vert_{\mathcal{M}_{p, \infty}^{\lambda}(d\nu)}\nonumber\\[0.02in] \end{equation} if and only Radon measure $d\mu$ supported in $\Omega\subset \mathbb{R}^n$ controlled $$\Arrowvert\mu\Arrowvert_{\beta}=\sup_{x\in\mathbb{R}^n,\,r>0}r^{-\beta}\mu(B(x,r))<\infty$$ provided $1<p<q<\infty$ satisfies $n-\alpha p<\beta\leq n,\; \alpha=\frac{n}{\lambda}-\frac{\beta}{\lambda_\ast}\; \text{ }\;\frac{\lambda_\ast}{q}\leq \frac{\lambda}{p}\nonumber\,$. Our result provide a new class of functions which larger than previous ones, since have strict inclusions $\dot{B}_{p,\infty}^{s}\hookrightarrow L^{\lambda, \infty}\hookrightarrow \mathcal{M}_{p}^{\lambda}\hookrightarrow\mathcal{M}_{p, \infty}^{\lambda} \nonumber $ as $1<p<\lambda<\infty$ $s\in\mathbb{R}$ $\frac{1}{p}-\frac{s}{n}=\frac{1}{\lambda}$. If concentrated on $\partial\mathbb{R}^n_+$, byproduct get Sobolev-Morrey inequality half-spaces $\mathbb{R}^n_+$ recovers well-known Sobolev-trace $L^p(\mathbb{R}^n_+)$. Also, suitable analysis non-doubling Cader\'on-Zygmund decomposition M_{\alpha}f\Vert_{\mathcal{M}_{p, \ell}^{\lambda}(d\mu)}\,\sim\, I_{\alpha}f\Vert_{\mathcal{M}_{p, \ell}^{\lambda}(d\mu)}\nonumber $\mu(B_r(x))\sim r^{\beta}$ support $\text{spt}(\mu)$ <\beta\leq n$ with $0<\alpha<n$. This extends ones.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On soft Hausdorff spaces

The aim of this paper is to study some properties of soft Hausdorff space introduced by Shabir and Naz. Firstly, we give a representation of soft sets and soft topological spaces. Secondly, we introduce some new concepts in soft topological space such as convergence of sequences, homeomorphism and investigate the relations between these concepts and Hausdorff axiom in soft topological space. 20...

متن کامل

An extension theorem for finite positive measures on surfaces of finite‎ ‎dimensional unit balls in Hilbert spaces

A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...

متن کامل

Function spaces and Hausdorff dimension on fractals

We start by surveying a possible approach for function spaces of Besov type on special closed subsets of Rn. Afterwards we recall that, in the case of Sobolev spaces and Besov spaces on Rn, the Hausdorff dimension for the graphs of continuous functions belonging to such spaces has been studied by several authors, and that in the case of Besov spaces the final answer concerning the maximal possi...

متن کامل

Modal compact Hausdorff spaces

We introduce modal compact Hausdorff spaces as generalizations of modal spaces, and show these are coalgebras for the Vietoris functor on compact Hausdorff spaces. Modal compact regular frames and modal de Vries algebras are introduced as algebraic counterparts of modal compact Hausdorff spaces, and dualities are given for the categories involved. These extend the familiar Isbell and de Vries d...

متن کامل

On the Characterization of Hausdorff Spaces

In this paper A, B, X, Y denote sets. Let X be an empty set. Note that ⋃ X is empty. Next we state several propositions: (1) (δX) ◦A ⊆ [:A, A :]. (2) (δX) ([:A, A :]) ⊆ A. (3) For every subset A of X holds (δX) ([:A, A :]) = A. (4) dom〈π2(X×Y ), π1(X×Y )〉 = [:X, Y :] and rng〈π2(X×Y ), π1(X×Y )〉 = [:Y, X :]. (5) 〈π2(X × Y ), π1(X × Y )〉 ◦[:A, B :] ⊆ [:B, A :]. (6) For every subset A of X and for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Fennici Mathematici

سال: 2021

ISSN: ['2737-0690', '2737-114X']

DOI: https://doi.org/10.5186/aasfm.2021.4670