Activity-Stability Relationships in Extremophilic Enzymes
نویسندگان
چکیده
منابع مشابه
Activity-stability relationships in extremophilic enzymes.
Psychrophilic, mesophilic, and thermophilic alpha-amylases have been studied as regards their conformational stability, heat inactivation, irreversible unfolding, activation parameters of the reaction, properties of the enzyme in complex with a transition state analog, and structural permeability. These data allowed us to propose an energy landscape for a family of extremophilic enzymes based o...
متن کاملFunction and biotechnology of extremophilic enzymes in low water activity
Enzymes from extremophilic microorganisms usually catalyze chemical reactions in non-standard conditions. Such conditions promote aggregation, precipitation, and denaturation, reducing the activity of most non-extremophilic enzymes, frequently due to the absence of sufficient hydration. Some extremophilic enzymes maintain a tight hydration shell and remain active in solution even when liquid wa...
متن کاملCorrigendum: Trading off stability against activity in extremophilic aldolases
Understanding enzyme stability and activity in extremophilic organisms is of great biotechnological interest, but many questions are still unsolved. Using 2-deoxy-D-ribose-5-phosphate aldolase (DERA) as model enzyme, we have evaluated structural and functional characteristics of different orthologs from psychrophilic, mesophilic and hyperthermophilic organisms. We present the first crystal stru...
متن کاملProtein stability in extremophilic archaea.
Extremophilic microorganisms have adapted their molecular machinery to grow and thrive under the most adverse environmental conditions. These microorganisms have found their natural habitat at the boiling and freezing point of water, in high salt concentration and at extreme pH values. The extremophilic proteins, selected by Nature to withstand this evolutionary pressure, represent a wide resea...
متن کاملDomain relationships in thiamine diphosphate-dependent enzymes.
Three-dimensional structures have been determined for 13 different enzymes that use thiamine diphosphate (ThDP) as a cofactor. These enzymes fall into five families, where members within a family have similar structures. In different families, there are similarities between some domains that clearly point to a common ancestor for all of these enzymes. Where the enzyme structures differ, evoluti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2003
ISSN: 0021-9258
DOI: 10.1074/jbc.m212508200