Active Learning with Statistical Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Learning with Statistical Models

For many types of machine learning algorithms, one can compute the statistically \optimal" way to select training data. In this paper, we review how optimal data selection techniques have been used with feedforward neural networks. We then show how the same principles may be used to select data for two alternative, statistically-based learning architectures: mixtures of Gaussians and locally we...

متن کامل

Active Learning with Statistical

For many types of machine learning algorithms, one can compute the statistically \op-timal" way to select training data. In this paper, we review how optimal data selection techniques have been used with feedforward neural networks. We then show how the same principles may be used to select data for two alternative, statistically-based learning ar-chitectures: mixtures of Gaussians and locally ...

متن کامل

Statistical Active Learning Algorithms

We describe a framework for designing efficient active learning algorithms that are tolerant to random classification noise and differentially-private. The framework is based on active learning algorithms that are statistical in the sense that they rely on estimates of expectations of functions of filtered random examples. It builds on the powerful statistical query framework of Kearns [30]. We...

متن کامل

Statistical Snakes: Active Region Models

This paper describes a new region-growing technique that uses a closed snake driven by a pressure force that is a function of the statistical characteristics of image data. This statistical snake expands until its elements encounter pixels that lie outside user-defined limits relative to a seed region; when these limits are violated the pressure force is reversed to make the model contract. Ten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Artificial Intelligence Research

سال: 1996

ISSN: 1076-9757

DOI: 10.1613/jair.295