Active learning for human protein-protein interaction prediction

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks

Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...

متن کامل

Active Learning for Membrane Protein Structure Prediction

Background: About 30% of genes code for membrane proteins, which are involved in a wide variety of crucial biological functions. Despite their importance, experimentally determined structures correspond to only about 1.7% of protein structures deposited in the Protein Data Bank due to the difficulty in crystallizing membrane proteins. Algorithms that can identify proteins whose high-resolution ...

متن کامل

PIPs: human protein–protein interaction prediction database

The PIPs database (http://www.compbio.dundee.ac.uk/www-pips) is a resource for studying protein-protein interactions in human. It contains predictions of >37,000 high probability interactions of which >34,000 are not reported in the interaction databases HPRD, BIND, DIP or OPHID. The interactions in PIPs were calculated by a Bayesian method that combines information from expression, orthology, ...

متن کامل

A two-stage learning method for protein-protein interaction prediction

In this paper, a new method for PPI (proteinprotein interaction) prediction is proposed. In PPI prediction, a reliable and sufficient number of training samples is not available, but a large number of unlabeled samples is in hand. In the proposed method, the denoising autoencoders are employed for learning robust features. The obtained robust features are used in order to train a classifier wit...

متن کامل

Protein-protein interaction contact matrix prediction with deep learning

Deep learning has emerged as a new area of machine learning research. It has been successfully applied to several fields such as images, sounds, text and motion. In this project, deep learning was applied to protein interaction prediction and compared with support vector machines. Deep learning was shown to have a good performance as well as SVM with Fisher score features.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BMC Bioinformatics

سال: 2010

ISSN: 1471-2105

DOI: 10.1186/1471-2105-11-s1-s57