Absolutely continuous invariant measures for expanding piecewise linear maps

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity of Absolutely Continuous Invariant Measures for Piecewise Expanding Unimodal Maps

Let f : [0, 1]→ [0, 1] be a piecewise expanding unimodal map of class C, with k ≥ 1, and μ = ρdx the (unique) SRB measure associated to it. We study the regularity of ρ. In particular, points N where ρ is not differentiable has zero Hausdorff dimension, but is uncountable if the critical orbit of f is dense. This improves on a work of Szewc (1984). We also obtain results about higher order diff...

متن کامل

Absolutely continuous invariant measures for piecewise real-analytic expanding maps on the plane

We prove the existence of absolutely continuous invariant measures for piecewise real-analytic expanding maps on bounded regions in the plane.

متن کامل

Absolutely Continuous Invariant Measures That Are Maximal

Let A be a certain irreducible 0-1 matrix and let t denote the family of piecewise linear Markov maps on [0,1] which are consistent with A. The main result of this paper characterizes those maps in t whose (unique) absolutely continuous invariant measure is maximal, and proves that for "most" of the maps that are consistent with A, the absolutely continuous invariant measure is not maximal.

متن کامل

Invariant Measures for Real Analytic Expanding Maps

Let X be a compact connected subset of Rd with non-empty interior, and T : X → X a real analytic full branch expanding map with countably many branches. Elements of a thermodynamic formalism for such systems are developed, including criteria for compactness of transfer operators acting on spaces of bounded holomorphic functions. In particular a new sufficient condition for the existence of a T ...

متن کامل

A Generalization of Straube’s Theorem: Existence of Absolutely Continuous Invariant Measures for Random Maps

A randommap is a discrete-time dynamical system in which one of a number of transformations is randomly selected and applied at each iteration of the process. In this paper, we study randommaps. The main result provides a necessary and sufficient condition for the existence of absolutely continuous invariant measure for a randommap with constant probabilities and position-dependent probabilities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones mathematicae

سال: 2001

ISSN: 0020-9910

DOI: 10.1007/pl00005797