ABJM matrix model and 2D Toda lattice hierarchy

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The N = 2 supersymmetric Toda lattice hierarchy and matrix models

We propose a new integrable N = 2 supersymmetric Toda lattice hierarchy which may be relevant for constructing a supersymmetric one–matrix model. We define its first two Hamil-tonian structures, the recursion operator and Lax–pair representation. We provide partial evidence for the existence of an infinite-dimensional N = 2 superalgebra of its flows. We study its bosonic limit and introduce new...

متن کامل

Toda Lattice Hierarchy and Zamolodchikov’s Conjecture

where the domain of integration for the operator is (0,∞). The quantity e(p) does not depend on tn’s. It should be remarked that our tn corresponds to tn/2 of refs.[1, 2]. Independently, Bernard and LeClair showed that φ(t) solves the shG equation[3]. Quite recently, Tracy and Widom proved that above φ(t) satisfies both the mKdV hierarchy and the shG hierarchy[2]. Their proof is based on the fa...

متن کامل

Toda Lattice Hierarchy and Generalized String Equations

String equations of the p-th generalized Kontsevich model and the compactified c = 1 string theory are re-examined in the language of the Toda lattice hierarchy. As opposed to a hypothesis postulated in the literature, the generalized Kontsevich model at p = −1 does not coincide with the c = 1 string theory at self-dual radius. A broader family of solutions of the Toda lattice hierarchy includi...

متن کامل

The multicomponent 2D Toda hierarchy: Dispersionless limits

In this paper we discuss the dispersionless limit of the multicomponent 2D Toda hierarchy. The discrete flows of the hierarchy are used to define charge preserving Lax and Orlov–Schulman operators. This construction allows us to perform two types of dispersionless limits, one type leads to the 0-genus universal Whitham hierarchy while the other leads to a dispersionless hierarchy which contains...

متن کامل

The modular hierarchy of the Toda lattice

The modular vector field plays an important role in the theory of Poisson manifolds and is intimately connected with the Poisson cohomology of the space. In this paper we investigate its significance in the theory of integrable systems. We illustrate in detail the case of the Toda lattice both in Flaschka and natural coordinates.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2019

ISSN: 1029-8479

DOI: 10.1007/jhep03(2019)197