A Weak Galerkin Finite Element Method for $p$-Laplacian Problem
نویسندگان
چکیده
منابع مشابه
A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations
This article introduces and analyzes a weak Galerkin mixed finite element method for solving the biharmonic equation. The weak Galerkin method, first introduced by two of the authors (J. Wang and X. Ye) in [52] for second order elliptic problems, is based on the concept of discrete weak gradients. The method uses completely discrete finite element functions and, using certain discrete spaces an...
متن کاملWeak Galerkin Finite Element Method for Second Order Parabolic Equations
We apply in this paper the weak Galerkin method to the second order parabolic differential equations based on a discrete weak gradient operator. We establish both the continuous time and the discrete time weak Galerkin finite element schemes, which allow using the totally discrete functions in approximation space and the finite element partitions of arbitrary polygons with certain shape regular...
متن کاملConvergence Analysis of a Galerkin Boundary Element Method for the Dirichlet Laplacian Eigenvalue Problem
In this paper, a rigorous convergence and error analysis of a Galerkin boundary element method for the Dirichlet Laplacian eigenvalue problem is presented. The formulation of the eigenvalue problem in terms of a boundary integral equation yields a nonlinear boundary integral operator eigenvalue problem. This nonlinear eigenvalue problem and its Galerkin approximation are analyzed in the framewo...
متن کاملA weak Galerkin finite element method for the Navier-Stokes equations
In this paper, a weak Galerkin finite element method (WGFEM) is proposed for solving the Navier-Stokes equations (NSEs). The existence and uniqueness of the WGFEM solution of NSEs are established. The WGFEM provides very accurate numerical approximations for both the velocity field and pressure field, even with very high Reynolds numbers. The salient feature is that the flexibility of the WGFEM...
متن کاملFinite Element Approximation of the p(·)-Laplacian
In this paper we consider the continuous piecewise linear finite element approximation of the following problem: Given p € (1, oo), /, and g , find u such that -V • (\Vu\"-2Vu) = f iniîcR2, u = g on a«. The finite element approximation is defined over Í2* , a union of regular triangles, yielding a polygonal approximation to Q. For sufficiently regular solutions u , achievable for a subclass of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: East Asian Journal on Applied Mathematics
سال: 2021
ISSN: 2079-7362,2079-7370
DOI: 10.4208/eajam.020920.251220