A volume-based approach to the multiplicative ergodic theorem on Banach spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Concise Proof of the Multiplicative Ergodic Theorem on Banach Spaces

We give a streamlined proof of the multiplicative ergodic theorem for quasi-compact operators on Banach spaces with

متن کامل

A quantitative Mean Ergodic Theorem for uniformly convex Banach spaces

We provide an explicit uniform bound on the local stability of ergodic averages in uniformly convex Banach spaces. Our result can also be viewed as a finitary version in the sense of T. Tao of the Mean Ergodic Theorem for such spaces and so generalizes similar results obtained for Hilbert spaces by Avigad, Gerhardy and Towsner [1] and T. Tao [11].

متن کامل

Oseledec’s Multiplicative Ergodic Theorem

These are notes for a talk in the Junior Geometry seminar at UT Austin on Oseledec’s multiplicative ergodic theorem given in Fall 2002. The purpose of the notes is to insure that I know, or at least am convinced that I think I know, what I am talking about. They contain far more material than the talks themselves, constituting a complete proof of the discrete-time version of the multiplicative ...

متن کامل

A multiplicative Banach-Stone theorem

The Banach-Stone theorem states that any surjective, linear mapping T between spaces of continuous functions that satisfies ‖T (f)− T (g)‖ = ‖f − g‖, where ‖ · ‖ denotes the uniform norm, is a weighted composition operator. We study a multiplicative analogue, and demonstrate that a surjective mapping T , not necessarily linear, between algebras of continuous functions with ‖T (f)T (g)‖ = ‖fg‖ m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2015

ISSN: 1078-0947

DOI: 10.3934/dcds.2016.36.2377