منابع مشابه
$(varphi_1, varphi_2)$-variational principle
In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm, such that $f + g $ attains its strong minimum on $X. $ This result extends some of the well-known varitional principles as that of Ekeland [On the variational principle, J. Ma...
متن کاملA Variational Principle in Discrete Space-Time – Existence of Minimizers
We formulate a variational principle for a collection of projectors in an indefinite inner product space. The existence of minimizers is proved in various situations. In a recent book it was proposed to formulate physics with a new variational principle in space-time [2]. In the present paper we construct minimizers of this variational principle. In order to make the presentation self-contained...
متن کاملSpace-Discretized Verlet-Algorithm from a Variational Principle
für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namen...
متن کاملThe Principle of the Fermionic Projector: A New Variational Principle in Space-Time
In this short review, we introduce the mathematical framework of the principle of the fermionic projector and set up a variational principle in discrete space-time. The connection to the continuum theory is outlined. Recent results and open problems are discussed. The principle of the fermionic projector [1] provides a new model of space-time together with the mathematical framework for the for...
متن کاملVariational principle and phase space measure in non-canonical coordinates
Theoretical formalisms very often use non-canonical equations of motion. For example, the equations for Eulerian variables, that describe ideal continuous media, are in general non-canonical [1]. Non-canonical phase space flows can be derived from Hamiltonian dynamics by means of non-canonical transformations of phase space coordinates (i.e. transformations with Jacobian not equal to one) while...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1994
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-1994-1181181-3