A universal set of growth operations for fullerenes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal simulation of Hamiltonians using a finite set of control operations

Any quantum system with a non-trivial Hamiltonian is able to simulate any other Hamiltonian evolution provided that a sufficiently large group of unitary control operations is available. We show that there exist finite groups with this property and present a sufficient condition in terms of group characters. We give examples of such groups in dimension 2 and 3. Furthermore, we show that it is p...

متن کامل

Church’s Set Theory with a Universal Set

A detailed and fairly elementary introduction is given to the techniques used by Church to prove the consistency of his set theory with a universal set by constructing models of it from models of ZF. The construction is explained and some general facts about it proved.

متن کامل

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

New Expansion for Certain Isomers of Various Classes of Fullerenes

This paper is dedicated to propose an algorithm in order to generate the certain isomers of some well-known fullerene bases. Furthermore, we enlist the bipartite edge frustration correlated with some of symmetrically distinct innite families of fullerenes generated by the oered process.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chemical Physics Letters

سال: 2008

ISSN: 0009-2614

DOI: 10.1016/j.cplett.2008.09.005