A uniqueness theorem for some nonlinear boundary value problems
نویسندگان
چکیده
منابع مشابه
Existence and Local Uniqueness for Nonlinear Lidstone Boundary Value Problems
Higher order upper and lower solutions are used to establish the existence and local uniqueness of solutions to y = f(t, y, y′′, . . . , y(2n−2)), satisfying boundary conditions of the form gi(y(0), y(2i−2)(1))−y(2i−2)(0) = 0, hi(y(0), y(2i−2)(1))−y(2i−2)(0) = 0, 1 ≤ i ≤ n.
متن کاملExistence and Uniqueness Theorems for Some Fourth-order Nonlinear Boundary Value Problems
Let G and f : [0,1]×R4 → R be two functions satisfying Caratheodory conditions. This paper is concerned with the problems of existence and uniqueness of solutions for the nonlinear fourth-order ordinary differential equation y′′′′ +λy′′ +ky+G(x,y,y′,y′′,y′′′)= f (x,y,y′,y′′,y′′′) with one of a particular set of boundary conditions.
متن کاملBoundary Value Problems for some Fully Nonlinear Elliptic Equations
Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 with boundary ∂M . We denote the Ricci curvature, scalar curvature, mean curvature, and the second fundamental form by Ric, R , h, and Lαβ , respectively. The Yamabe problem for manifolds with boundary is to find a conformal metric ĝ = eg such that the scalar curvature is constant and the mean curvature is zero. The boundary is call...
متن کاملSinc-Galerkin method for solving a class of nonlinear two-point boundary value problems
In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1969
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1969-0233072-0