A uniform stability principle for dual lattices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Boundedness Principle for operators on hypervector spaces

The aim of this paper is to prove the Uniform Boundedness Principle and Banach-Steinhaus Theorem for anti linear operators and hence strong linear operators on Banach hypervector spaces. Also we prove the continuity of the product operation in such spaces.

متن کامل

Congruence Lattices of Uniform Lattices

A lattice L is uniform, if for any congruence Θ of L, any two congruence classes A and B of Θ are of the same size, that is, |A| = |B| holds. A classical result of R. P. Dilworth represents a finite distributive lattice D as the congruence lattice of a finite lattice L. We show that this L can be constructed as a finite uniform lattice.

متن کامل

Uniform Asymptotic Stability and Robust Stability for Positive Linear Volterra Difference Equations in Banach Lattices

A dynamical system is called positive if any solution of the system starting from nonnegative states maintains nonnegative states forever. In many applications where variables represent nonnegative quantities we often encounter positive dynamical systems as mathematical models see 1, 2 , and many researches for positive systems have been done actively; for recent developments see, for example, ...

متن کامل

A Uniform Refinement Property for Congruence Lattices

The Congruence Lattice Problem asks whether every algebraic distributive lattice is isomorphic to the congruence lattice of a lattice. It was hoped that a positive solution would follow from E. T. Schmidt’s construction or from the approach of P. Pudlák, M. Tischendorf, and J. Tůma. In a previous paper, we constructed a distributive algebraic lattice A with א2 compact elements that cannot be ob...

متن کامل

Uniform Boundedness Principle

The following two propositions are true: (1) For every sequence s1 of real numbers and for every real number r such that s1 is bounded and 0 ≤ r holds lim inf(r s1) = r · lim inf s1. (2) For every sequence s1 of real numbers and for every real number r such that s1 is bounded and 0 ≤ r holds lim sup(r s1) = r · lim sup s1. Let X be a real Banach space. One can verify that MetricSpaceNormX is co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Logic and Analysis

سال: 2019

ISSN: 1759-9008

DOI: 10.4115/jla.2019.11.2