A Uniform Lower Bound for Hausdorff Dimension for Transient Symmetric Levy Processes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hausdorff Dimension of the Contours of Symmetric Additive Lévy Processes

Let X1, . . . , XN denote N independent, symmetric Lévy processes on R. The corresponding additive Lévy process is defined as the following N -parameter random field on R: (0.1) X(t) := X1(t1) + · · ·+ XN (tN ) (t ∈ R+ ). Khoshnevisan and Xiao (2002) have found a necessary and sufficient condition for the zero-set X−1({0}) of X to be non-trivial with positive probability. They also provide boun...

متن کامل

A weak approximation for the Extrema's distributions of Levy processes

‎Suppose that $X_{t}$ is a one-dimensional and real-valued L'evy‎ ‎process started from $X_0=0$‎, ‎which ({bf 1}) its nonnegative‎ ‎jumps measure $nu$ satisfying $int_{Bbb‎ ‎R}min{1,x^2}nu(dx)

متن کامل

Diophantine approximation on manifolds and lower bounds for Hausdorff dimension

Given n ∈ N and τ > 1 n , let Sn(τ) denote the classical set of τ approximable points in R, which consists of x ∈ R that lie within distance q from the lattice 1 q Z for infinitely many q ∈ N. In pioneering work, Kleinbock & Margulis showed that for any non-degenerate submanifold M of R and any τ > 1 n almost all points on M are not τ -approximable. Numerous subsequent papers have been geared t...

متن کامل

Hausdorff Dimension For Dummies

phenomena in two dimensions. I spent most of the academic years 2013-2015 in Bonn, Germany (at the Max-Planck Institut and then the Hausdorff Center). In general, the Hausdorff dimension of a product is at least the sum of the dimensions of the two spaces. Does equality hold if one space is Euclidian? So let be. I find this discussion in Wikipedia very good: Fractal dimension Imagine a particul...

متن کامل

Lévy Processes: Capacity and Hausdorff Dimension

We use the recently-developed multiparameter theory of additive Lévy processes to establish novel connections between an arbitrary Lévy process X in R, and a new class of energy forms and their corresponding capacities. We then apply these connections to solve two long-standing problems in the folklore of the theory of Lévy processes. First, we compute the Hausdorff dimension of the image X(G) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1983

ISSN: 0091-1798

DOI: 10.1214/aop/1176993503