A transfer for compact Lie group actions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Desingularizing Compact Lie Group Actions

This note surveys the well-known structure of G-manifolds and summarizes parts of two papers that have not yet appeared: [4], joint with J. Brüning and F. W. Kamber, and [8], joint with I. Prokhorenkov. In particular, from a given manifold on which a compact Lie group acts smoothly, we construct a sequence of manifolds on which the same Lie group acts, but with fewer levels of singular strata. ...

متن کامل

Lie group actions on compact

Let G be a homotopically trivial and effective compact Lie group action on a compact manifold N of nonpositive curvature. Under certain assumptions on N we prove that if G has dimension equal to rank of Center π1(N), then G must be connected. Furthermore, if on N there exists a point having negative definite Ricci tensor, then we show that G is the trivial group.

متن کامل

Borsuk-ulam Type Theorems for Compact Lie Group Actions

Borsuk-Ulam type theorems for arbitrary compact Lie group actions are proven. The transfer plays a major role in this approach. We present Borsuk-Ulam type theorems for arbitrary compact Lie group actions. The essence of our approach is a generalization of the ideal-valued index of FadellHusseini [FH88] using transfer [Boa66], [BG75], [Dol76], [KP72], [Rou71]. Once an appropriate concept (Defin...

متن کامل

Equivariant Periodicity for Compact Group Actions

Probably the most basic structural phenomenon of high dimensional topology is Siebenmann’s periodicity theorem [3] (as amended by Nicas [5]), which asserts that the manifolds homotopy equivalent to M are in a one-to-one correspondence with (a subset of, because of nonresolvable honology manifolds [1]) those homotopy equivalent to M×D. The main goal of this paper is to show the following extensi...

متن کامل

Almost Invariant Submanifolds for Compact Group Actions

A compact (not necessarily connected) Lie group G carries a (unique) biinvariant probability measure. Using this measure, one can average orbits of actions of G on affine convex sets to obtain fixed points. In particular, if G acts on a manifoldM , G leaves invariant a riemannian metric onM , and this metric can sometimes be used to obtain fixed points for the nonlinear action of G on M itself....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1986

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1986-0840643-7