A Time-Resolved Single-Molecular Train Based on Aerolysin Nanopore
نویسندگان
چکیده
منابع مشابه
Time Resolved Single Molecule Spectroscopy
A new method based on the calculation of autocorrelation functions for spectra measured at a high acquisition rate is developed to study spectral dynamics of single molecules. The technique allows for spectroscopy with time resolutions down to the luminescence lifetime. The method is used to study spectral diffusion in two-photon excitation spectra of diphenyloctatetraene molecules doped in an ...
متن کاملHigh-throughput and label-free single nanoparticle sizing based on time-resolved on-chip microscopy.
Sizing individual nanoparticles and dispersions of nanoparticles provides invaluable information in applications such as nanomaterial synthesis, air and water quality monitoring, virology, and medical diagnostics. Several conventional nanoparticle sizing approaches exist; however, there remains a lack of high-throughput approaches that are suitable for low-resource and field settings, i.e., met...
متن کاملSingle-molecule nanopore enzymology.
Biological nanopores are a class of membrane proteins that open nanoscale water conduits in biological membranes. When they are reconstituted in artificial membranes and a bias voltage is applied across the membrane, the ionic current passing through individual nanopores can be used to monitor chemical reactions, to recognize individual molecules and, of most interest, to sequence DNA. In addit...
متن کاملTime-resolved detection of single-electron interference.
We demonstrate real-time detection of self-interfering electrons in a double quantum dot embedded in an Aharonov-Bohm interferometer, with visibility approaching unity. We use a quantum point contact as a charge detector to perform time-resolved measurements of single-electron tunneling. With increased bias voltage, the quantum point contact exerts a back-action on the interferometer leading to...
متن کاملDetection of a single enzyme molecule based on a solid-state nanopore sensor.
The nanopore sensor as a high-throughput and low-cost technology can detect a single molecule in a solution. In the present study, relatively large silicon nitride (Si3N4) nanopores with diameters of ∼28 and ∼88 nm were fabricated successfully using a focused Ga ion beam. We have used solid-state nanopores with various sizes to detect the single horseradish peroxidase (HRP) molecule and for the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chem
سال: 2018
ISSN: 2451-9294
DOI: 10.1016/j.chempr.2018.05.004