A tight Karp-Lipton collapse result in bounded arithmetic

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Competing Provers Yield Improved Karp-Lipton Collapse Results

Via competing provers, we show that if a language A is self-reducible and has polynomial-size circuits then S2 = S2. Building on this, we strengthen the Kämper– AFK Theorem, namely, we prove that if NP ⊆ (NP ∩ coNP)/poly then the polynomial hierarchy collapses to SNP∩coNP 2 . We also strengthen Yap’s Theorem, namely, we prove that if NP ⊆ coNP/poly then the polynomial hierarchy collapses to SNP...

متن کامل

A Note on the Karp-Lipton Collapse for the Exponential Hierarchy

We extend previous collapsing results involving the exponential hierarchy by using recent hardness-randomness trade-off results. Specifically, we show that if the second level of the exponential hierarchy has polynomialsized circuits, then it collapses all the way down to MA.

متن کامل

An Independence Result for Intuitionistic Bounded Arithmetic

It is shown that the intuitionistic theory of polynomial induction on positive Π1 (coNP) formulas does not prove the sentence ¬¬∀x, y∃z ≤ y(x ≤ |y| → x = |z|). This implies the unprovability of the scheme ¬¬PIND(Σ 1 ) in the mentioned theory. However, this theory contains the sentence ∀x, y¬¬∃z ≤ y(x ≤ |y| → x = |z|). The above independence result is proved by constructing an ω-chain of submode...

متن کامل

An unexpected separation result in Linearly Bounded Arithmetic

The theories Si1(α) and T i 1(α) are the analogues of Buss’ relativized bounded arithmetic theories in the language where every term is bounded by a polynomial, and thus all definable functions grow linearly in length. For every i, a Σbi+1(α)-formula TOP (a), which expresses a form of the total ordering principle, is exhibited that is provable in S 1 (α), but unprovable in Ti1(α). This is in co...

متن کامل

Cuts and overspill properties in models of bounded arithmetic

In this paper we are concerned with cuts in models of Samuel Buss' theories of bounded arithmetic, i.e. theories like $S_{2}^i$ and $T_{2}^i$. In correspondence with polynomial induction, we consider a rather new notion of cut that we call p-cut. We also consider small cuts, i.e. cuts that are bounded above by a small element. We study the basic properties of p-cuts and small cuts. In particula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Computational Logic

سال: 2010

ISSN: 1529-3785,1557-945X

DOI: 10.1145/1805950.1805952