A three point condition for surfaces of constant mean curvature
نویسندگان
چکیده
منابع مشابه
Constant mean curvature surfaces with three ends.
We announce the classification of complete almost embedded surfaces of constant mean curvature, with three ends and genus zero. They are classified by triples of points on the sphere whose distances are the asymptotic necksizes of the three ends.
متن کاملNew Constant Mean Curvature Surfaces
We use the DPW construction [5] to present three new classes of immersed CMC cylinders, each of which includes surfaces with umbilics. The first class consists of cylinders with one end asymptotic to a Delaunay surface. The second class presents surfaces with a closed planar geodesic. In the third class each surface has a closed curve of points with a common tangent plane. An appendix, by the t...
متن کاملCoplanar Constant Mean Curvature Surfaces
We consider constant mean curvature surfaces with finite topology, properly embedded in three-space in the sense of Alexandrov. Such surfaces with three ends and genus zero were constructed and completely classified by the authors [GKS2, GKS1]. Here we extend the arguments to the case of an arbitrary number of ends, under the assumption that the asymptotic axes of the ends lie in a common plane...
متن کاملEmbedded Constant Mean Curvature Surfaces in Euclidean Three-space
In this paper we refine the construction and related estimates for complete Constant Mean Curvature surfaces in Euclidean three-space developed in [12] by adopting the more precise and powerful version of the methodology which was developed in [16]. As a consequence we remove the severe restrictions in establishing embeddedness for complete Constant Mean Curvature surfaces in [12] and we produc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1972
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1972.40.269