A third-order differential equation on a time scale

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing a Third-Order Linear Differential Equation

In this paper, using the approach of Hurwitz and the necessary conditions given in 4,6], we construct a third order linear diierential equation whose diierential Galois group is the primitive subgroup F SL3 36 S L(3; C) of order 108.

متن کامل

A RESEARCH NOTE ON THE SECOND ORDER DIFFERENTIAL EQUATION

Let U(t, ) be solution of the Dirichlet problem y''+( t-q(t))y= 0 - 1 t l y(-l)= 0 = y(x), with variabIe t on (-1, x), for fixed x, which satisfies the initial condition U(-1, )=0 , (-1, )=1. In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigen values has been investigated . Furthermore, the leading term of the asymptotic formula for ...

متن کامل

on a characteristic problem for a third order pseudoparabolic equation

in this paper, we investigate the goursat problem in the class c21(d)cn0 (d  p) c00 (d q)for a third order pseudoparabolic equation. some results are given concerning the existence and uniquenessfor the solution of the suggested problem.

متن کامل

Asymptotic properties of solutions of a 2n order differential equation on a time scale

In this paper we are concerned with a 2n-th order linear self-adjoint differential equation on a time scale. The results generalize known results for the corresponding ordinary differential equations and for difference equations. We define type I and type II solutions, prove the existence of these solutions, and verify asymptotic properties of these solutions. A quadratic functional correspondi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical and Computer Modelling

سال: 2000

ISSN: 0895-7177

DOI: 10.1016/s0895-7177(00)00153-9