منابع مشابه
A Remark on the Gromov Convergence Theorem
In [3] M. Gromov introduced the concept of convergence of Riemannian manifolds and he proved the convergence theorem. Since that time the theorem has been developed in detail (see [5], [7], [2]), and we know that it contains some interesting applications. Nevertheless there seems to be an inadequate way of applying the convergence theorem. The purpose of this paper is to present an example whic...
متن کاملAlgorithmic randomness for Doob's martingale convergence theorem in continuous time
We study Doob’s martingale convergence theorem for computable continuous time martingales on Brownian motion, in the context of algorithmic randomness. A characterization of the class of sample points for which the theorem holds is given. Such points are given the name of Doob random points. It is shown that a point is Doob random if its tail is computably random in a certain sense. Moreover, D...
متن کاملA Theorem on Semi - Continuous Functions
RECENTLY G. C. Young* and A. Denjoyf have communicated theorems—those in Denjoy's memoir are of an especially comprehensive character—dealing, in particular, with point sets where the four derivatives of a given continuous function are identical. It is the purpose of this note to treat an analogous problem that arises when "derivative" is replaced by "saltus."$ However, instead of confining our...
متن کاملA metastable dominated convergence theorem
The dominated convergence theorem implies that if (fn) is a sequence of functions on a probability space taking values in the interval [0, 1], and (fn) converges pointwise a.e., then ( ∫ fn) converges to the integral of the pointwise limit. Tao [26] has proved a quantitative version of this theorem: given a uniform bound on the rates of metastable convergence in the hypothesis, there is a bound...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1957
ISSN: 0386-2194
DOI: 10.3792/pja/1195524988