A TGV-Based Framework for Variational Image Decompression, Zooming, and Reconstruction. Part II: Numerics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A TGV-Based Framework for Variational Image Decompression, Zooming, and Reconstruction. Part I: Analytics

A variational model for image reconstruction is introduced and analyzed in function space. Specific about the model is the data fidelity which is realized via a basis transformation with respect to a Riesz basis followed by interval constraints. This setting in particular covers the task of reconstructing images constrained to data obtained from JPEG or JPEG 2000 compressed files. As image prio...

متن کامل

A TGV Regularized Wavelet Based Zooming Model

We propose and state a novel scheme for image magnification. It is formulated as a minimization problem which incorporates a data fidelity and a regularization term. Data fidelity is modeled using a wavelet transformation operator while the Total Generalized Variation functional of second order is applied for regularization. Well-posedness is obtained in a function space setting and an efficien...

متن کامل

A New Technique for Image Zooming Based on the Moving Least Squares

In this paper, a new method for gray-scale image and color zooming algorithm based on their local information is offered. In the proposed method, the unknown values of the new pixels on the image are computed by Moving Least Square (MLS) approximation based on both the quadratic spline and Gaussian-type weight functions. The numerical results showed that this method is more preferable to biline...

متن کامل

Compressed Sensing MR Image Reconstruction Exploiting TGV and Wavelet Sparsity

Compressed sensing (CS) based methods make it possible to reconstruct magnetic resonance (MR) images from undersampled measurements, which is known as CS-MRI. The reference-driven CS-MRI reconstruction schemes can further decrease the sampling ratio by exploiting the sparsity of the difference image between the target and the reference MR images in pixel domain. Unfortunately existing methods d...

متن کامل

A New Shearlet Framework for Image Denoising

Traditional noise removal methods like Non-Local Means create spurious boundaries inside regular zones. Visushrink removes too many coefficients and yields recovered images that are overly smoothed. In Bayesshrink method, sharp features are preserved. However, PSNR (Peak Signal-to-Noise Ratio) is considerably low. BLS-GSM generates some discontinuous information during the course of denoising a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Imaging Sciences

سال: 2015

ISSN: 1936-4954

DOI: 10.1137/15m1023877