A TCHEBYCHEFF-LIKE INEQUALITY FOR STOCHASTIC PROCESSES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

A Useful Family of Stochastic Processes for Modeling Shape Diffusions

 One of the new area of research emerging in the field of statistics is the shape analysis. Shape is defined as all the geometrical information of an object whose location, scale and orientation is not of interest. Diffusion in shape analysis can be studied via either perturbation of the key coordinates identifying the initial object or random evolution of the shape itself. Reviewing the f...

متن کامل

A Stochastic Heisenberg Inequality

An analogue of the Fourier transform will be introduced for all square integrable continuous martingale processes whose quadratic variation is deterministic. Using this transform we will formulate and prove a stochastic Heisenberg inequality.

متن کامل

A Bernstein-type inequality for stochastic processes of quadratic forms of Gaussian variables

The concentration phenomenon of stochastic processes around their mean is of key importance in statistical estimation by model selection for getting nonasymptotic bounds for some statistics. For example in model selection via penalization, for devising sharp penalties and proving useful upper bounds for the risk of an estimator, one needs generally to control uniformly the statistic of the risk...

متن کامل

Stochastic Processes ( Fall 2014 ) Spectral representations and ergodic theorems for stationary stochastic processes Stationary stochastic processes

A stochastic process X is strongly stationary if its fdds are invariant under time shifts, that is, for any (finite) n, for any t0 and for all t1, ..., tn ∈ T , (Xt1 , ..., Xtn) and (Xt1+t0 , ..., Xtn+t0) have the same distribution. A stochastic process X is weakly stationary if its mean function is constant and its covariance function is invariant under time shifts. That is, for all t ∈ T , E(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 1965

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.53.2.274