A Tauberian theorem for the $(C,\,1)(N,\,1/(n+1))$ summability method
نویسندگان
چکیده
منابع مشابه
A Tauberian Theorem for the Generalized Nörlund-euler Summability Method
Let (pn) and (qn) be any two non-negative real sequences with Rn := n ∑ k=0 pkqn−k 6= 0 (n ∈ N). And E1 n− Euler summability method. Let (xn) be a sequence of real or complex numbers and set N p,qE 1 n := 1 Rn n ∑
متن کاملA Tauberian Theorem for (C, 1) Summability Method
In this paper, we retrieve slow oscillation of a real sequence u = (u n) out of (C, 1) summability of the generator sequence (V (0) n (Δu)) of (u n) under some additional condition. Consequently, we recover convergence or subsequential convergence of (u n) out of (C, 1) summability of (u n) under certain additional conditions that control oscillatory behavior of the sequence (u n).
متن کاملH"{o}lder summability method of fuzzy numbers and a Tauberian theorem
In this paper we establish a Tauberian condition under which convergence follows from H"{o}lder summability of sequences of fuzzy numbers.
متن کاملA Tauberian theorem for the weighted mean method of summability of sequences of fuzzy numbers
Let X and Y be two sequence spaces and A = (ank) be an infinite matrix. If for each x ∈ X the series An(x) = ∑∞ k=0 ankxk converges for each n and the sequence Ax = (Anx) ∈ Y we say that the matrix A maps X into Y . By (X,Y ) we denote the set of all matrices which map X into Y . Let c be the set of all convergent sequences. A matrix A is called regular if A ∈ (c, c) and limn→∞Anx = limk→∞ xk f...
متن کاملAn alternative proof of a Tauberian theorem for Abel summability method
Using a corollary to Karamata’s main theorem [Math. Z. 32 (1930), 319—320], we prove that if a slowly decreasing sequence of real numbers is Abel summable, then it is convergent in the ordinary sense. Subjclass [2010] : 40A05; 40E05; 40G10.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1970
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1970-0267314-0