A Survey on Deep Reinforcement Learning Network for Traffic Light Cycle Control

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Reinforcement Learning for Traffic Light Control in Vehicular Networks

Existing inefficient traffic light control causes numerous problems, such as long delay and waste of energy. To improve efficiency, taking real-time traffic information as an input and dynamically adjusting the traffic light duration accordingly is a must. In terms of how to dynamically adjust traffic signals’ duration, existing works either split the traffic signal into equal duration or extra...

متن کامل

Using a Deep Reinforcement Learning Agent for Traffic Signal Control

Ensuring transportation systems are efficient is a priority for modern society. Technological advances have made it possible for transportation systems to collect large volumes of varied data on an unprecedented scale. We propose a traffic signal control system which takes advantage of this new, high quality data, with minimal abstraction compared to other proposed systems. We apply modern deep...

متن کامل

Traffic Light Control Using Deep Policy-Gradient and Value-Function Based Reinforcement Learning

Recent advances in combining deep neural network architectures with reinforcement learning techniques have shown promising potential results in solving complex control problems with high dimensional state and action spaces. Inspired by these successes, in this paper, we build two kinds of reinforcement learning algorithms: deep policy-gradient and value-function based agents which can predict t...

متن کامل

Traffic Light Control by Multiagent Reinforcement Learning Systems

Traffic light control is one of the main means of controlling road traffic. Improving traffic control is important because it can lead to higher traffic throughput and reduced congestion. This chapter describes multiagent reinforcement learning techniques for automatic optimization of traffic light controllers. Such techniques are attractive because they can automatically discover efficient con...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Scientific Research in Computer Science, Engineering and Information Technology

سال: 2020

ISSN: 2456-3307

DOI: 10.32628/cseit206458