منابع مشابه
Hedge Algorithm and Subgradient Methods
We show that the Hedge Algorithm, a method widely used in Machine Learning, can be interpreted as a particular subgradient algorithm for minimizing a well-chosen convex function, namely a Mirror Descent Scheme. Using this reformulation, we can improve slightly the worstcase convergence guarantees of the Hedge Algorithm. Recently, Nesterov has introduced the class of Primal-Dual Subgradient Algo...
متن کاملDistributed Stochastic Subgradient Projection Algorithms for Convex Optimization
We consider a distributed multi-agent network system where the goal is to minimize a sum of convex objective functions of the agents subject to a common convex constraint set. Each agent maintains an iterate sequence and communicates the iterates to its neighbors. Then, each agent combines weighted averages of the received iterates with its own iterate, and adjusts the iterate by using subgradi...
متن کاملA hybrid subgradient algorithm for nonexpansive mappings and equilibrium problems
We propose a strongly convergent algorithm for finding a common point in the solution set of a class of pseudomonotone equilibrium problems and the set of fixed points of nonexpansive mappings in a real Hilbert space. The proposed algorithm uses only one projection and does not require any Lipschitz condition for the bifunctions. AMS 2010 Mathematics subject classification: 65 K10, 65 K15, 90 C...
متن کاملOSGA: a fast subgradient algorithm with optimal complexity
This paper presents an algorithm for approximately minimizing a convex function in simple, not necessarily bounded convex, finite-dimensional domains, assuming only that function values and subgradients are available. No global information about the objective function is needed apart from a strong convexity parameter (which can be put to zero if only convexity is known). The worst case number o...
متن کاملThe volume algorithm: producing primal solutions with a subgradient method
We present an extension to the subgradient algorithm to produce primal as well as dual solutions. It can be seen as a fast way to carry out an approximation of Dantzig-Wolfe decomposition. This gives a fast method for producing approximations for large scale linear programs. It is based on a new theorem in linear programming duality. We present successful experience with linear programs coming ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1982
ISSN: 0021-9045
DOI: 10.1016/0021-9045(82)90029-6