A Study on Air Demand Forecasting Using Multivariate Time Series Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

forecasting of urban demand for water in tehran using structural, time series and gmdh neural networks models: a comparative study

conventionally, regression and time series analyses have been employed in modeling water demand forecasts. in recent years, the relatively new technique of neural networks (nns) has been proposed as an efficient tool for modeling and forecasting. the objective of this study is to investigate the relatively new technique of gmdh – type neural networks for the use of forecasting long – term urban...

متن کامل

Copula Methods for Forecasting Multivariate Time Series

Copula-based models provide a great deal of ‡exibility in modelling multivariate distributions, allowing the researcher to specify the models for the marginal distributions separately from the dependence structure (copula) that links them to form a joint distribution. In addition to ‡exibility, this often also facilitates estimation of the model in stages, reducing the computational burden. Thi...

متن کامل

Forecasting the behavior of multivariate time series using neural networks

Abstract--This pal~er presents a neural network approach to multivariate time-series anal.lwis. Real world observations ~?/flottr /.'ices in three cities have been used as a benchmark in our ev~eriments, l"eed/orward connectionist networks have bt,t,tl ~k,.signed to model flottr l , ices over the period/iom ..lltgttsl 1972 to Novt,mher 1980./or the cities ~?[Blt[]ith~. :lliltneapoli.s, and Kans...

متن کامل

Autoregressive Time Series Forecasting of Computational Demand

We study the predictive power of autoregressive moving average models when forecasting demand in two shared computational networks, PlanetLab and Tycoon. Demand in these networks is very volatile, and predictive techniques to plan usage in advance can improve the performance obtained drastically. Our key finding is that a random walk predictor performs best for one-step-ahead forecasts, whereas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Korean Journal of Applied Statistics

سال: 2009

ISSN: 1225-066X

DOI: 10.5351/kjas.2009.22.5.1007