A Study on Air Demand Forecasting Using Multivariate Time Series Models
نویسندگان
چکیده
منابع مشابه
forecasting of urban demand for water in tehran using structural, time series and gmdh neural networks models: a comparative study
conventionally, regression and time series analyses have been employed in modeling water demand forecasts. in recent years, the relatively new technique of neural networks (nns) has been proposed as an efficient tool for modeling and forecasting. the objective of this study is to investigate the relatively new technique of gmdh – type neural networks for the use of forecasting long – term urban...
متن کاملForecasting economic time series using unobserved components time series models
A preliminary version, please do not quote
متن کاملCopula Methods for Forecasting Multivariate Time Series
Copula-based models provide a great deal of exibility in modelling multivariate distributions, allowing the researcher to specify the models for the marginal distributions separately from the dependence structure (copula) that links them to form a joint distribution. In addition to exibility, this often also facilitates estimation of the model in stages, reducing the computational burden. Thi...
متن کاملForecasting the behavior of multivariate time series using neural networks
Abstract--This pal~er presents a neural network approach to multivariate time-series anal.lwis. Real world observations ~?/flottr /.'ices in three cities have been used as a benchmark in our ev~eriments, l"eed/orward connectionist networks have bt,t,tl ~k,.signed to model flottr l , ices over the period/iom ..lltgttsl 1972 to Novt,mher 1980./or the cities ~?[Blt[]ith~. :lliltneapoli.s, and Kans...
متن کاملAutoregressive Time Series Forecasting of Computational Demand
We study the predictive power of autoregressive moving average models when forecasting demand in two shared computational networks, PlanetLab and Tycoon. Demand in these networks is very volatile, and predictive techniques to plan usage in advance can improve the performance obtained drastically. Our key finding is that a random walk predictor performs best for one-step-ahead forecasts, whereas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Korean Journal of Applied Statistics
سال: 2009
ISSN: 1225-066X
DOI: 10.5351/kjas.2009.22.5.1007