A strong law of large numbers for non-additive probabilities

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the Strong Law of Large Numbers

Petrov (1996) proved the connection between general moment conditions and the applicability of the strong law of large numbers to a sequence of pairwise independent and identically distributed random variables. This note examines this connection to a sequence of pairwise negative quadrant dependent (NQD) and identically distributed random variables. As a consequence of the main theorem ...

متن کامل

On the strong law of large numbers and additive functions

Let f(n) be a strongly additive complex-valued arithmetic function. Under mild conditions on f , we prove the following weighted strong law of large numbers: if X, X1, X2, . . . is any sequence of integrable i.i.d. random variables, then lim N→∞ ∑N n=1 f(n)Xn ∑N n=1 f(n) = EX a.s.

متن کامل

Law of large numbers for non-additive measures

Our aim is to give for some classes non-additive measures some limit theorems. For balanced games we obtain a weak and strong law of large numbers for bounded random variables, a sharper conclusion is obtain with exact games. We provide an extension to upper enveloppe measures.

متن کامل

MARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....

متن کامل

A general strong law of large numbers for additive arithmetic functions

Let f(n) be a strongly additive complex valued arithmetic function. Under mild conditions on f , we prove the following weighted strong law of large numbers: if X, X1, X2, . . . is any sequence of integrable i.i.d. random variables, then lim N→∞ ∑ N n=1 f(n)Xn ∑ N n=1 f(n) a.s. = EX.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Approximate Reasoning

سال: 2013

ISSN: 0888-613X

DOI: 10.1016/j.ijar.2012.06.002